Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Small Molecule Pathway Database.

Compounds

Showing 17851 - 17900 of 68067 compounds
Compound ID Compound Pathways

PW_C078834

Image HMDB0090105: View Metabocard

CL(a-13:0/i-12:0/i-16:0/i-22:0)

CL(a-13:0/i-12:0/i-16:0/i-22:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-16:0/i-22:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isohexadecanoic acid at the C-3 position, and one chain of isodocosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078835

Image HMDB0090107: View Metabocard

CL(a-13:0/i-12:0/i-16:0/i-24:0)

CL(a-13:0/i-12:0/i-16:0/i-24:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-16:0/i-24:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isohexadecanoic acid at the C-3 position, and one chain of isotetracosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078836

Image HMDB0090149: View Metabocard

CL(a-13:0/i-12:0/i-17:0/18:2(9Z,11Z))

CL(a-13:0/i-12:0/i-17:0/18:2(9Z,11Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/18:2(9Z,11Z)), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of (9Z,11Z)-octadecadienoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078837

Image HMDB0090121: View Metabocard

CL(a-13:0/i-12:0/i-17:0/a-13:0)

CL(a-13:0/i-12:0/i-17:0/a-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/a-13:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of anteisotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078838

Image HMDB0090133: View Metabocard

CL(a-13:0/i-12:0/i-17:0/a-15:0)

CL(a-13:0/i-12:0/i-17:0/a-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/a-15:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of anteisopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078839

Image HMDB0090145: View Metabocard

CL(a-13:0/i-12:0/i-17:0/a-17:0)

CL(a-13:0/i-12:0/i-17:0/a-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/a-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of anteisoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078840

Image HMDB0090168: View Metabocard

CL(a-13:0/i-12:0/i-17:0/a-21:0)

CL(a-13:0/i-12:0/i-17:0/a-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/a-21:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of anteisoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078841

Image HMDB0090180: View Metabocard

CL(a-13:0/i-12:0/i-17:0/a-25:0)

CL(a-13:0/i-12:0/i-17:0/a-25:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/a-25:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of anteisopentacosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078842

Image HMDB0090113: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-12:0)

CL(a-13:0/i-12:0/i-17:0/i-12:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-12:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isododecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078843

Image HMDB0090117: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-13:0)

CL(a-13:0/i-12:0/i-17:0/i-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-13:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078844

Image HMDB0090125: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-14:0)

CL(a-13:0/i-12:0/i-17:0/i-14:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-14:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isotetradecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078845

Image HMDB0090129: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-15:0)

CL(a-13:0/i-12:0/i-17:0/i-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-15:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078846

Image HMDB0090137: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-16:0)

CL(a-13:0/i-12:0/i-17:0/i-16:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-16:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isohexadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078847

Image HMDB0090141: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-17:0)

CL(a-13:0/i-12:0/i-17:0/i-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078848

Image HMDB0090152: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-18:0)

CL(a-13:0/i-12:0/i-17:0/i-18:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-18:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isooctadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078849

Image HMDB0090156: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-19:0)

CL(a-13:0/i-12:0/i-17:0/i-19:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-19:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isononadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078850

Image HMDB0090160: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-20:0)

CL(a-13:0/i-12:0/i-17:0/i-20:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-20:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isoeicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078851

Image HMDB0090164: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-21:0)

CL(a-13:0/i-12:0/i-17:0/i-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-21:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078852

Image HMDB0090172: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-22:0)

CL(a-13:0/i-12:0/i-17:0/i-22:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-22:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isodocosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078853

Image HMDB0090176: View Metabocard

CL(a-13:0/i-12:0/i-17:0/i-24:0)

CL(a-13:0/i-12:0/i-17:0/i-24:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-17:0/i-24:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isoheptadecanoic acid at the C-3 position, and one chain of isotetracosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078854

Image HMDB0090221: View Metabocard

CL(a-13:0/i-12:0/i-18:0/18:2(9Z,11Z))

CL(a-13:0/i-12:0/i-18:0/18:2(9Z,11Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/18:2(9Z,11Z)), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of (9Z,11Z)-octadecadienoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078855

Image HMDB0090192: View Metabocard

CL(a-13:0/i-12:0/i-18:0/a-13:0)

CL(a-13:0/i-12:0/i-18:0/a-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/a-13:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of anteisotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078856

Image HMDB0090204: View Metabocard

CL(a-13:0/i-12:0/i-18:0/a-15:0)

CL(a-13:0/i-12:0/i-18:0/a-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/a-15:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of anteisopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078857

Image HMDB0090216: View Metabocard

CL(a-13:0/i-12:0/i-18:0/a-17:0)

CL(a-13:0/i-12:0/i-18:0/a-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/a-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of anteisoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078858

Image HMDB0090240: View Metabocard

CL(a-13:0/i-12:0/i-18:0/a-21:0)

CL(a-13:0/i-12:0/i-18:0/a-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/a-21:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of anteisoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078859

Image HMDB0090252: View Metabocard

CL(a-13:0/i-12:0/i-18:0/a-25:0)

CL(a-13:0/i-12:0/i-18:0/a-25:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/a-25:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of anteisopentacosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078860

Image HMDB0090183: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-12:0)

CL(a-13:0/i-12:0/i-18:0/i-12:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-12:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isododecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078861

Image HMDB0090187: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-13:0)

CL(a-13:0/i-12:0/i-18:0/i-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-13:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078862

Image HMDB0090195: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-14:0)

CL(a-13:0/i-12:0/i-18:0/i-14:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-14:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isotetradecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078863

Image HMDB0090199: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-15:0)

CL(a-13:0/i-12:0/i-18:0/i-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-15:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078864

Image HMDB0090207: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-16:0)

CL(a-13:0/i-12:0/i-18:0/i-16:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-16:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isohexadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078865

Image HMDB0090211: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-17:0)

CL(a-13:0/i-12:0/i-18:0/i-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078866

Image HMDB0090222: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-18:0)

CL(a-13:0/i-12:0/i-18:0/i-18:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-18:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isooctadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078867

Image HMDB0090227: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-19:0)

CL(a-13:0/i-12:0/i-18:0/i-19:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-19:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isononadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078868

Image HMDB0090231: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-20:0)

CL(a-13:0/i-12:0/i-18:0/i-20:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-20:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isoeicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078869

Image HMDB0090235: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-21:0)

CL(a-13:0/i-12:0/i-18:0/i-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-21:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078870

Image HMDB0090243: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-22:0)

CL(a-13:0/i-12:0/i-18:0/i-22:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-22:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isodocosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078871

Image HMDB0090247: View Metabocard

CL(a-13:0/i-12:0/i-18:0/i-24:0)

CL(a-13:0/i-12:0/i-18:0/i-24:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-18:0/i-24:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isooctadecanoic acid at the C-3 position, and one chain of isotetracosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078872

Image HMDB0090273: View Metabocard

CL(a-13:0/i-12:0/i-19:0/18:2(9Z,11Z))

CL(a-13:0/i-12:0/i-19:0/18:2(9Z,11Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/18:2(9Z,11Z)), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of (9Z,11Z)-octadecadienoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078873

Image HMDB0090258: View Metabocard

CL(a-13:0/i-12:0/i-19:0/a-13:0)

CL(a-13:0/i-12:0/i-19:0/a-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/a-13:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of anteisotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078874

Image HMDB0090264: View Metabocard

CL(a-13:0/i-12:0/i-19:0/a-15:0)

CL(a-13:0/i-12:0/i-19:0/a-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/a-15:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of anteisopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078875

Image HMDB0090270: View Metabocard

CL(a-13:0/i-12:0/i-19:0/a-17:0)

CL(a-13:0/i-12:0/i-19:0/a-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/a-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of anteisoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078876

Image HMDB0090282: View Metabocard

CL(a-13:0/i-12:0/i-19:0/a-21:0)

CL(a-13:0/i-12:0/i-19:0/a-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/a-21:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of anteisoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078877

Image HMDB0090288: View Metabocard

CL(a-13:0/i-12:0/i-19:0/a-25:0)

CL(a-13:0/i-12:0/i-19:0/a-25:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/a-25:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of anteisopentacosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078878

Image HMDB0090254: View Metabocard

CL(a-13:0/i-12:0/i-19:0/i-12:0)

CL(a-13:0/i-12:0/i-19:0/i-12:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/i-12:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of isododecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078879

Image HMDB0090256: View Metabocard

CL(a-13:0/i-12:0/i-19:0/i-13:0)

CL(a-13:0/i-12:0/i-19:0/i-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/i-13:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of isotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078880

Image HMDB0090260: View Metabocard

CL(a-13:0/i-12:0/i-19:0/i-14:0)

CL(a-13:0/i-12:0/i-19:0/i-14:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/i-14:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of isotetradecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078881

Image HMDB0090262: View Metabocard

CL(a-13:0/i-12:0/i-19:0/i-15:0)

CL(a-13:0/i-12:0/i-19:0/i-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/i-15:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of isopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078882

Image HMDB0090266: View Metabocard

CL(a-13:0/i-12:0/i-19:0/i-16:0)

CL(a-13:0/i-12:0/i-19:0/i-16:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/i-16:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of isohexadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C078883

Image HMDB0090268: View Metabocard

CL(a-13:0/i-12:0/i-19:0/i-17:0)

CL(a-13:0/i-12:0/i-19:0/i-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(a-13:0/i-12:0/i-19:0/i-17:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position, one chain of isododecanoic acid at the C-2 position, one chain of isononadecanoic acid at the C-3 position, and one chain of isoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Showing 17851 - 17900 of 68067 compounds