Loader

Pathways

PathWhiz ID Pathway Meta Data

PW146467

Pw146467 View Pathway
drug action

Valbenazine Drug Metabolism Action Pathway

Homo sapiens

PW000277

Pw000277 View Pathway
drug action

Valdecoxib Action Pathway

Homo sapiens
Valdecoxib, a selective prostaglandin G/H synthase 2 (better known as cyclooxygenase-2 or COX-2) inhibitor, is classified as a nonsteroidal anti-inflammatory drug (NSAID). Valdecoxib was used for its anti-inflammatory, analgesic, and antipyretic effects in the management of osteoarthritis and for the treatment of dysmenorrhea or acute pain. Unlike celecoxib, valdecoxib lacks a sulfonamide chain and does not require CYP450 enzymes for metabolism. Both COX-1 and COX-2 catalyze the conversion of arachidonic acid to prostaglandin G2 (PGG2) and PGG2 to prostaglandin H2 (PGH2). PGH2 is the precursor of a number of prostaglandins, including prostaglandin E2 (PGE2), prostaglandin I2 (PGI2) and thomboxane A2 (TxA2). Valdecoxib selectively inhibits the cyclooxygenase-2 (COX-2) enzyme, a key enzyme in the production of PGE2. PGE2 is a potent mediator of pain, inflammation and fever. The first part of this figure depicts the anti-inflammatory, analgesic and antipyretic pathway of valdecoxib. The latter portion of this figure depicts valdecoxib’s potential involvement in platelet aggregation. Prostaglandin synthesis varies across different tissue types. Platelets, anuclear cells derived from fragmentation from megakaryocytes, contain COX-1, but not COX-2. COX-1 activity in platelets is required for thromboxane A2 (TxA2)-mediated platelet aggregation. Platelet activation and coagulation do not normally occur in intact blood vessels. After blood vessel injury, platelets adhere to the subendothelial collagen at the site of injury. Activation of collagen receptors initiates phospholipase C (PLC)-mediated signaling cascades resulting in the release of intracellular calcium from the dense tubula system. The increase in intracellular calcium activates kinases required for morphological change, transition to procoagulant surface, secretion of granular contents, activation of glycoproteins, and the activation of phospholipase A2 (PLA2). Activation of PLA2 results in the liberation of arachidonic acid, a precursor to prostaglandin synthesis, from membrane phospholipids. The accumulation of TxA2, ADP and thrombin mediates further platelet recruitment and signal amplification. TxA2 and ADP stimulate their respective G-protein coupled receptors, thomboxane A2 receptor and P2Y purinoreceptor 12, and inhibit the production of cAMP via adenylate cyclase inhibition. This counteracts the adenylate cyclase stimulatory effects of the platelet aggregation inhibitor, PGI2, produced by neighbouring endothelial cells. Platelet adhesion, cytoskeletal remodeling, granular secretion and signal amplification are independent processes that lead to the activation of the fibrinogen receptor. Fibrinogen receptor activation exposes fibrinogen binding sites and allows platelet cross-linking and aggregation to occur. Neighbouring endothelial cells found in blood vessels express both COX-1 and COX-2. COX-2 in endothelial cells mediates the synthesis of PGI2, an effective platelet aggregation inhibitor and vasodilator, while COX-1 mediates vasoconstriction and stimulates platelet aggregation. PGI2 produced by endothelial cells encounters platelets in the blood stream and binds to the G-protein coupled prostacyclin receptor. This causes G-protein mediated activation of adenylate cyclase, which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic AMP (cAMP). Four cAMP molecules then bind to the regulatory subunits of the inactive cAMP-dependent protein kinase holoenzyme causing dissociation of the regulatory subunits and leaving two active catalytic subunit monomers. The active subunits of cAMP-dependent protein kinase catalyze the phosphorylation of a number of proteins. Phosphorylation of inositol 1,4,5-trisphosphate receptor type 1 on the endoplasmic reticulum (ER) inhibits the release of calcium from the ER. This in turn inhibits the calcium-dependent events, including PLA2 activation, involved in platelet activation and aggregation. Inhibition of PLA2 decreases intracellular TxA2 and inhibits the platelet aggregation pathway. cAMP-dependent kinase also phosphorylates the actin-associated protein, vasodilator-stimulated phosphoprotein. Phosphorylation inhibits protein activity, which includes cytoskeleton reorganization and platelet activation. Valdexocib preferentially inhibits COX-2 with little activity against COX-1. COX-2 inhibition in endothelial cells decreases the production of PGI2 and the ability of these cells to inhibit platelet aggregation and stimulate vasodilation. These effects are thought to be responsible for the rare, but severe, adverse cardiovascular effects observed with rofecoxib, a COX-2 inhibitor which was subsequently been withdrawn from the market. Valdexocib was withdrawn from the Canadian, U.S. and E.U. markets in 2005 due to concerns of possible increased risk of heart attack and stroke.

PW125910

Pw125910 View Pathway
drug action

Valdecoxib Action Pathway (New)

Homo sapiens
Valdecoxib is an oral non-steroidal anti-inflammatory drug given to treat osteoarthritis and dysmenorrhoea. It targets the prostaglandin G/H synthase-2 (COX-2) in the cyclooxygenase pathway. The cyclooxygenase pathway begins in the cytosol with phospholipids being converted into arachidonic acid by the action of phospholipase A2. The rest of the pathway occurs on the endoplasmic reticulum membrane, where prostaglandin G/H synthase 1 & 2 converts arachidonic acid into prostaglandin H2. Prostaglandin H2 can either be converted into thromboxane A2 via thromboxane A synthase, prostacyclin/prostaglandin I2 via prostacyclin synthase or prostaglandin E2 via prostaglandin E synthase. COX-2 is an inducible enzyme, and during inflammation, it is responsible for prostaglandin synthesis. It leads to the formation of prostaglandin E2 which is responsible for contributing to the inflammatory response by activating immune cells and for increasing pain sensation by acting on pain fibers. Valdecoxib enters the cell via the solute carrier family 22-member 8 transporter and inhibits the action of COX-2 on the endoplasmic reticulum membrane. This reduces the formation of prostaglandin H2 and therefore, prostaglandin E2. The low concentration of prostaglandin E2 attenuates the effect it has on stimulating immune cells and pain fibers, consequently reducing inflammation and pain. Side effects of valdecoxib may include diarrhea, nausea, upset stomach, headache, indigestion, stomach cramps, upper respiratory tract infection (nose, throat, or sinuses), back pain, dizziness, gas, muscle pain, rash, and stuffy nose.

PW144697

Pw144697 View Pathway
drug action

Valdecoxib Drug Metabolism Action Pathway

Homo sapiens

PW176240

Pw176240 View Pathway
metabolic

Valdecoxib Predicted Metabolism Pathway

Homo sapiens
Metabolites of Valdecoxib are predicted with biotransformer.

PW127470

Pw127470 View Pathway
drug action

Valganciclovir Action Pathway

Homo sapiens
Valganciclovir is an antiviral medication used to treat cytomegalovirus (CMV) retinitis in patients diagnosed with acquired immunodeficiency syndrome (AIDS). Valganciclovir is a prodrug of ganciclovir. After administration, valganciclovir is rapidly converted to ganciclovir in the intestine or liver by intestinal or hepatic esterases.Ganciclovir is transported into the blood and to the infected cells. It is then converted to the active form by a virus-encoded cellular enzyme, thymidine kinase, which catalyzes phosphorylation of ganciclovir to ganciclovir monophosphate. Ganciclovir monophosphate is converted into the diphosphate by cellular guanylate kinase then into the triphosphate by a number of cellular enzymes. Ganciclovir triphosphate inhibits the activity of DNA polymerase by competing with its substrate dGTP. Ganciclovir triphosphate also gets incorporated into viral DNA, but since it lacks the 3'-OH group which is needed to form the 5′ to 3′ phosphodiester linkage essential for DNA chain elongation, this causes DNA chain termination, preventing the growth of viral DNA. Less Viral DNA is transported into the nucleus, therefore, less viral DNA is integrated into the host DNA. Less viral proteins produced, fewer viruses can form.

PW145477

Pw145477 View Pathway
drug action

Valganciclovir Drug Metabolism Action Pathway

Homo sapiens

PW122596

Pw122596 View Pathway
metabolic

Valine Biosynthesis

Pseudomonas aeruginosa
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.

PW000812

Pw000812 View Pathway
metabolic

Valine Biosynthesis

Escherichia coli
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.

PW002474

Pw002474 View Pathway
metabolic

Valine Biosynthesis

Saccharomyces cerevisiae
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine.