Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.

Filter by Pathway Type:



Showing 48491 - 48500 of 48701 pathways
SMPDB ID Pathway Chemical Compounds Proteins

SMP0100356

Pw101384 View Pathway
Protein

Protein Synthesis: Alanine

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111853

Pw112896 View Pathway
Protein

Protein Synthesis: Arginine

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111854

Pw112910 View Pathway
Protein

Protein Synthesis: Asparagine

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111858

Pw112916 View Pathway
Protein

Protein Synthesis: Aspartic Acid

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111860

Pw112918 View Pathway
Protein

Protein Synthesis: Cysteine

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111864

Pw112922 View Pathway
Protein

Protein Synthesis: Glutamic Acid

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111862

Pw112920 View Pathway
Protein

Protein Synthesis: Glutamine

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111870

Pw112928 View Pathway
Protein

Protein Synthesis: Glycine

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111871

Pw112929 View Pathway
Protein

Protein Synthesis: Histidine

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.

SMP0111872

Pw112930 View Pathway
Protein

Protein Synthesis: Isoleucine

Protein synthesis is an essential life process that builds the important large amino acid macromolecules that function as enzymes, antibodies, and cellular structural components. Although synthesis begins with the transcription of DNA into RNA, this pathway depicts the reactions that occur during translation. Transcribed messenger RNA (mRNA), which contains the genetic code to direct protein synthesis, is transported out of the nucleus and becomes bound to ribosomes in the cytoplasm or endoplasmic reticulum. The amino acids required to assemble polypeptide chains are delivered to the ribosomes using transfer RNA (tRNA). Each tRNA molecule has both a binding site for a specific amino acid and a three-nucleotide sequence called the anticodon that forms three complementary base pairs with an mRNA codon. Charging or loading the appropriate amino acid onto its tRNA is carried out by an aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase. This enzyme catalyzes the esterification of an amino acid to one of all its compatible tRNAs to form an aminoacyl-tRNA. Each of the twenty amino acids has a corresponding aa-tRNA made by a specific aminoacyl-tRNA synthetase. Ribosomes match the anticodons of the charged tRNA molecules with successive codons of the mRNA. After a match is found, the ribosome transfers the amino acid from the matching tRNA onto the growing peptide chain via a reaction termed peptide condensation, and the tRNAs, no longer carrying amino acids, are released.
Showing 48491 - 48500 of 48701 pathways