Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader


Showing 55561 - 55580 of 55736 compounds

Compound ID

Compound Description

Pathway Class

Pathways

PW_C096633

Image HMDB0092611: View Metabocard

CL(i-14:0/i-17:0/i-13:0/a-13:0)

CL(i-14:0/i-17:0/i-13:0/a-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/a-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of anteisotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096634

Image HMDB0092623: View Metabocard

CL(i-14:0/i-17:0/i-13:0/a-15:0)

CL(i-14:0/i-17:0/i-13:0/a-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/a-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of anteisopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096635

Image HMDB0092635: View Metabocard

CL(i-14:0/i-17:0/i-13:0/a-17:0)

CL(i-14:0/i-17:0/i-13:0/a-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/a-17:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of anteisoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096636

Image HMDB0092659: View Metabocard

CL(i-14:0/i-17:0/i-13:0/a-21:0)

CL(i-14:0/i-17:0/i-13:0/a-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/a-21:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of anteisoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096637

Image HMDB0092671: View Metabocard

CL(i-14:0/i-17:0/i-13:0/a-25:0)

CL(i-14:0/i-17:0/i-13:0/a-25:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/a-25:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of anteisopentacosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096638

Image HMDB0092600: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-12:0)

CL(i-14:0/i-17:0/i-13:0/i-12:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-12:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isododecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096639

Image HMDB0092605: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-13:0)

CL(i-14:0/i-17:0/i-13:0/i-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096640

Image HMDB0092612: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-14:0)

CL(i-14:0/i-17:0/i-13:0/i-14:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-14:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isotetradecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096641

Image HMDB0092617: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-15:0)

CL(i-14:0/i-17:0/i-13:0/i-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096642

Image HMDB0092624: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-16:0)

CL(i-14:0/i-17:0/i-13:0/i-16:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-16:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isohexadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096643

Image HMDB0092629: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-17:0)

CL(i-14:0/i-17:0/i-13:0/i-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-17:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096644

Image HMDB0092638: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-18:0)

CL(i-14:0/i-17:0/i-13:0/i-18:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-18:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isooctadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096645

Image HMDB0092644: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-19:0)

CL(i-14:0/i-17:0/i-13:0/i-19:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-19:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isononadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096646

Image HMDB0092648: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-20:0)

CL(i-14:0/i-17:0/i-13:0/i-20:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-20:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isoeicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096647

Image HMDB0092653: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-21:0)

CL(i-14:0/i-17:0/i-13:0/i-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-21:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096648

Image HMDB0092660: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-22:0)

CL(i-14:0/i-17:0/i-13:0/i-22:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-22:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isodocosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096649

Image HMDB0092664: View Metabocard

CL(i-14:0/i-17:0/i-13:0/i-24:0)

CL(i-14:0/i-17:0/i-13:0/i-24:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-13:0/i-24:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotridecanoic acid at the C-3 position, and one chain of isotetracosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096650

Image HMDB0092690: View Metabocard

CL(i-14:0/i-17:0/i-14:0/18:2(9Z,11Z))

CL(i-14:0/i-17:0/i-14:0/18:2(9Z,11Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-14:0/18:2(9Z,11Z)), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotetradecanoic acid at the C-3 position, and one chain of (9Z,11Z)-octadecadienoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096651

Image HMDB0092677: View Metabocard

CL(i-14:0/i-17:0/i-14:0/a-13:0)

CL(i-14:0/i-17:0/i-14:0/a-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-14:0/a-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotetradecanoic acid at the C-3 position, and one chain of anteisotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid

PW_C096652

Image HMDB0092683: View Metabocard

CL(i-14:0/i-17:0/i-14:0/a-15:0)

CL(i-14:0/i-17:0/i-14:0/a-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/i-14:0/a-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of isotetradecanoic acid at the C-3 position, and one chain of anteisopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Lipid
Showing 55561 - 55580 of 55736 compounds