Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
pyrimidine ribonucleosides degradation
Escherichia coli
Metabolic Pathway
The degradation of pyrimidine ribonucleosides starts with either cytidine or uridine being transported into the cytosol.
Cytidine is transported into the cytosol through an nupG transporter. Once inside the cytosol, it can be degraded into uridine by reacting with water and ahydrogen ion through a cytidine deaminase resulting in the release of ammonium and uridine.
Uridine is transported into the cytosol through a nupG. Once in the cytosol , uridine can be degrade by reacting with phosphate through a uridine phosphorylase resulting in the release of an alpha-D-ribose-1-phosphate and a uracil. The alpha-D-ribose-1-phosphate reacts with an alpha-d-ribose 1,5-phosphomutase resulting in the release of a D-ribose 5-phosphate which can be incorporated into the pentose phosphate pathway.
References
pyrimidine ribonucleosides degradation References
Loh KD, Gyaneshwar P, Markenscoff Papadimitriou E, Fong R, Kim KS, Parales R, Zhou Z, Inwood W, Kustu S: A previously undescribed pathway for pyrimidine catabolism. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5114-9. doi: 10.1073/pnas.0600521103. Epub 2006 Mar 15.
Pubmed: 16540542
Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low Jr KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. Escherichia coli and Salmonella, Cellular and Molecular Biology, Second Edition. American Society for Microbiology, Washington, D.C., 1996.
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings