Pathways

PathWhiz ID Pathway Meta Data

PW000489

Pw000489 View Pathway
disease

Xanthinuria Type II

Homo sapiens
Xanthinuria Type II is a rare inborn error of metabolism (IEM) and autosomal recessive disorder and caused by a defective xanthine dehydrogenase. Xanthine dehydrogenase catalyzes the conversion of hypoxanthine into xanthine and conversion of xanthine into uric acid. This disorder is characterized by a large accumulation of xanthine and hypoxanthine; as well as dissipation of uric acid. Symptoms of the disorder include blood in the urine, recurrent urinary tract infections and abdominal pain. It is estimated that xanthinuria types I and II affects 1 in 69,000 individuals.

PW000488

Pw000488 View Pathway
disease

Xanthinuria Type I

Homo sapiens
Xanthinuria Type I is a condition caused by an autosomal recessive mutation. The condition was discovered (though not diagnosed) in 1817, when stones formed of almost pure xanthine were first identified by Marcet. The symptoms arise because of a malfunction in the production of xanthine oxidase. It is a rare . It is characterized by a loss of oxidase such as in serum and the uric acid found in peepee. As a result, the opposite is true for the presence of xanthine and hypoxanthine. They will be found in the latter and former in increased quantities. Although the condition can cause a wide range of symptoms including renal xanthine stones, what occurs most of the time is that xanthinuria is asymptomatic and diagnosis is product of chance.

PW122057

Pw122057 View Pathway
disease

Xanthinuria Type I

Rattus norvegicus
Xanthinuria Type I is a condition caused by an autosomal recessive mutation. The condition was discovered (though not diagnosed) in 1817, when stones formed of almost pure xanthine were first identified by Marcet. The symptoms arise because of a malfunction in the production of xanthine oxidase. It is a rare . It is characterized by a loss of oxidase such as in serum and the uric acid found in peepee. As a result, the opposite is true for the presence of xanthine and hypoxanthine. They will be found in the latter and former in increased quantities. Although the condition can cause a wide range of symptoms including renal xanthine stones, what occurs most of the time is that xanthinuria is asymptomatic and diagnosis is product of chance.

PW121833

Pw121833 View Pathway
disease

Xanthinuria Type I

Mus musculus
Xanthinuria Type I is a condition caused by an autosomal recessive mutation. The condition was discovered (though not diagnosed) in 1817, when stones formed of almost pure xanthine were first identified by Marcet. The symptoms arise because of a malfunction in the production of xanthine oxidase. It is a rare . It is characterized by a loss of oxidase such as in serum and the uric acid found in peepee. As a result, the opposite is true for the presence of xanthine and hypoxanthine. They will be found in the latter and former in increased quantities. Although the condition can cause a wide range of symptoms including renal xanthine stones, what occurs most of the time is that xanthinuria is asymptomatic and diagnosis is product of chance.

PW000080

Pw000080 View Pathway
disease

Xanthine Dehydrogenase Deficiency (Xanthinuria)

Homo sapiens
The rare genetic disorder, Xanthinuria (also referred to as xanthine oxidase deficiency) results from a deficiency of the enzyme xanthine oxidase. This enzyme deficiency causes the accumulation of: xanthine in the plasma, uric acid in serum or hypoxanthine, uric acid and xanthine in the urine. The disorder has symptoms including arthralgia, hematuria, mental retardation, stomatisis, and urolithiasis.

PW121976

Pw121976 View Pathway
disease

Xanthine Dehydrogenase Deficiency (Xanthinuria)

Rattus norvegicus
The rare genetic disorder, Xanthinuria (also referred to as xanthine oxidase deficiency) results from a deficiency of the enzyme xanthine oxidase. This enzyme deficiency causes the accumulation of: xanthine in the plasma, uric acid in serum or hypoxanthine, uric acid and xanthine in the urine. The disorder has symptoms including arthralgia, hematuria, mental retardation, stomatisis, and urolithiasis.

PW121751

Pw121751 View Pathway
disease

Xanthine Dehydrogenase Deficiency (Xanthinuria)

Mus musculus
The rare genetic disorder, Xanthinuria (also referred to as xanthine oxidase deficiency) results from a deficiency of the enzyme xanthine oxidase. This enzyme deficiency causes the accumulation of: xanthine in the plasma, uric acid in serum or hypoxanthine, uric acid and xanthine in the urine. The disorder has symptoms including arthralgia, hematuria, mental retardation, stomatisis, and urolithiasis.

PW000487

Pw000487 View Pathway
disease

Wolman Disease

Homo sapiens
In Wolman's disease excessive amounts of cholesterol ester in the liver are present mainly in the macrophages of the reticuloendo- thelial system. The livler in Wiolman's disease contains triglyceride at 10 to 20 times the normal concentratlon, most of whilch is present in hepatocytes. The first case of Wolman's disease was published in 1956 by M. Wolman, M.D., reporting a case of a 2 month old girl who had been admitted to the Hadassah University Hospital. Lysosomal acid lipase/acid cholesteryl ester hydrolase (LAL/ACEH) plays an important role in cellular processing of plasma lipoproteins and thus contributes to both the homeostatic control of plasma lipoprotein levels and the prevention of cellular lipid overload. Wolman's Disease results from severely reduced levels of the enzyme lysosomal acid lipase/acid cholesteryl ester hydrolase.

PW121832

Pw121832 View Pathway
disease

Wolman Disease

Mus musculus
In Wolman's disease excessive amounts of cholesterol ester in the liver are present mainly in the macrophages of the reticuloendo- thelial system. The livler in Wiolman's disease contains triglyceride at 10 to 20 times the normal concentratlon, most of whilch is present in hepatocytes. The first case of Wolman's disease was published in 1956 by M. Wolman, M.D., reporting a case of a 2 month old girl who had been admitted to the Hadassah University Hospital. Lysosomal acid lipase/acid cholesteryl ester hydrolase (LAL/ACEH) plays an important role in cellular processing of plasma lipoproteins and thus contributes to both the homeostatic control of plasma lipoprotein levels and the prevention of cellular lipid overload. Wolman's Disease results from severely reduced levels of the enzyme lysosomal acid lipase/acid cholesteryl ester hydrolase.

PW122056

Pw122056 View Pathway
disease

Wolman Disease

Rattus norvegicus
In Wolman's disease excessive amounts of cholesterol ester in the liver are present mainly in the macrophages of the reticuloendo- thelial system. The livler in Wiolman's disease contains triglyceride at 10 to 20 times the normal concentratlon, most of whilch is present in hepatocytes. The first case of Wolman's disease was published in 1956 by M. Wolman, M.D., reporting a case of a 2 month old girl who had been admitted to the Hadassah University Hospital. Lysosomal acid lipase/acid cholesteryl ester hydrolase (LAL/ACEH) plays an important role in cellular processing of plasma lipoproteins and thus contributes to both the homeostatic control of plasma lipoprotein levels and the prevention of cellular lipid overload. Wolman's Disease results from severely reduced levels of the enzyme lysosomal acid lipase/acid cholesteryl ester hydrolase.