Loader

Pathways

PathWhiz ID Pathway Meta Data

PW000031

Pw000031 View Pathway
metabolic

Nucleotide Sugars Metabolism

Homo sapiens
Nucleotide sugars are defined as any nucleotide in which the distal phosphoric residue of a nucleoside 5'-diphosphate is in glycosidic linkage with a monosaccharide or monosaccharide derivative. There are nine sugar nucleotides and they can be classified depending on the type of the nucleoside forming them: UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GlcUA, UDP- Xyl, GDP-Man, GDP-Fuc and CMP-NeuNAc. Turning back now to the pathway in question, namely the nucleotide sugar metabolism pathway, it should be noted that the nucleotide sugars play an important role. Indeed, they are donors of certain important residues of sugar which are vital to glycosylation and by extension tot the production of polysaccharides. This process produces the substrates for glycosyltransferases. These sugars have several additional roles. For example, nucleotide sugars serve a vital purpose as the intermediates in interconversions of nucleotide sugars that result in the creation and activation of certain sugars necessary in the glycosylation reaction in certain organisms. Moreover, the process of glycosylation is attributed mostly (though not entirely) to the endoplasmic reticulum/golgi apparatus. Logically then, due to the important role of nucleotide sugars in glycosylation, a plethora of transporters exist which displace the sugars from their point of production, the cytoplasm, to where they are needed. In the case, the endoplasmic reticulum and golgi apparatus.

PW000032

Pw000032 View Pathway
metabolic

Pantothenate and CoA Biosynthesis

Homo sapiens
Pantothenate, also called vitamin B5, is a nutrient that everyone requires in their diet. The nutrient gets its name from the greek word “pantothen” which means “from everywhere.” The reason it is called this is because pantothenic acid is found in almost every food. It is a precursor of coenzyme A, which is an essential part of many reactions in the body, specifically important in the production of compounds like cholesterol and different fatty acids. Most of pantothenic acid is found in food as phosphopentetheine or coenzyme A. Pantothenic acid, pantetheine 4’-phosphate and pantetheine are all found in red blood cells. The 6 step process in which coenzyme A is created begins with the creation of pantothenic acid from pantetheine, which is catalyzed by the enzyme pantetheinase. Pantothenic acid then works with pantothenate kinase 1 to produce D-4’-phosphopantothenate. This compound quickly becomes 4’phosphopantothenoylcysteine through the enzyme phosphopantothenate-cysteine ligase. 4’phosphopantothenoylcysteine then uses phosphopantothenoylcysteine decarboxylase to create pantetheine 4’-phosphate. This compound then undergoes two reactions, both resulting in the production of dephospho-CoA; the first reaction uses ectonucleotide pyrophosphatase/phosphodiesterase family member 1, the second uses bifunctional coenzyme A synthase. In the final step of coenzyme A synthesization, bifunctional coenzyme A synthase catalyzes dephospho-CoA into coenzyme A.

PW000033

Pw000033 View Pathway
metabolic

Phenylacetate Metabolism

Homo sapiens
Phenylacetate (or phenylacetic acid) metabolism involves two steps. The first step is the conversion of phenylacetate into phenylacetyl-CoA which is catalyzed by acyl-coenzyme A synthetase ACSM1 or acyl-coenzyme A synthetase ACSM2B. Coenzyme A and ATP are also involved in this first step and AMP and pyrophosphate will be generated during the first step of metabolism. In the second step, phenylacetyl-CoA and L-glutamine interacts with glycine N-acyltransferase to generate coenzyme A as well as phenylacetylglutamine, of which the latter will be excreted in the urine. Phenylacetate metabolism provides a route that facilitates the excretion of nitrogen for patients with urea cycle defects; hence, it is important for clinical purposes.

PW000034

Pw000034 View Pathway
metabolic

Pyruvaldehyde Degradation

Homo sapiens
This Pyruvaldehyde degradation pathway (Methylglyoxal degradation;2-oxopropanal degradation), also known as the glyoxalase system, is probably the most common pathway for the degradation of pyruvaldehyde (methylglyoxal), a potentially toxic metabolite due to its interaction with nucleic acids and other proteins. Pyruvaldehyde is formed in low concentrations by glycolysis, fatty acid metabolism and protein metabolism. Pyruvaldehyde is catalyzed by the glyoxylase system, composed of the enzymes lactoylglutathione lyase (glyoxalase I) and glyoxylase II. Glyoxalase I catalyes the isomerization of the spontaneously formed hemithioacetal adduct between glutathione and pyruvaldehyde into S-lactoylglutathione. S-lactoylglutathione is then catalyzed by glyoxalase II into D-lactic acid and glutathione. D-lactic acid is then catalyzed by an unknown quinol in the membrane to pyruvic acid, which then enters pyruvate metabolism.

PW000035

Pw000035 View Pathway
metabolic

Riboflavin Metabolism

Homo sapiens
Riboflavin (vitamin B2) is an important part of the enzyme cofactors FAD (flavin-adenine dinucleotide) and FMN (flavin mononucleotide). The name "riboflavin" actually comes from "ribose" and "flavin". Like the other B vitamins, riboflavin is needed for the breaking down and processing of ketone bodies, lipids, carbohydrates, and proteins. Riboflavin is found in many different foods, such as meats and vegetables.As the digestion process occurs, many different flavoproteins that come from food are broken down and riboflavin is reabsorbed. The reverse reaction is mediated by acid phosphatase 6. FMN can be turned into to FAD via FAD synthetase, while the reverse reaction is mediated by nucleotide pyrophosphatase. FAD and FMN are essential hydrogen carriers and are involved in over 100 redox reactions that take part in energy metabolism.

PW000036

Pw000036 View Pathway
metabolic

Thiamine Metabolism

Homo sapiens
Thiamine, (Vitamin B1), is a compound found in many different foods such as beans, seafood, meats and yogurt. It is usually maintained by the consumption of whole grains. It is an essential part of energy metabolism. This means that thiamine helps convert carbohydrates into energy. Eating carbohydrates increases the need for this vitamin, as your body can only store about 30mg at a time due to the vitamins short half-life. Thiamine was first synthesized in 1936, which was very helpful in researching its properties in relation to beriberi, a vitamin b1 deficiency. This deficiency has been observed mainly in countries where rice is the staple food. Thiamine metabolism begins in the extracellular space, being transported by a thiamine transporter into the cell. Once in the intracellular space, thiamine is converted into thiamine pyrophosphate through the enzyme thiamin pyrophosphate kinase 1. Thiamine pyrophosphate is then converted into thiamine triphosphate, again using the enzyme thiamin pyrophosphatekinase 1. After this, thiamine triphosphate uses thiamine-triphosphatase to revert to thiamine pyrophosphate, which undergoes a reaction using cancer-related nuceloside-triphosphatase to become thiamine monophosphate. This phosphorylated form is a metabolically active form of thiamine, as are the two other compounds, derivatives of thiamine, mentioned previously. The enzymes used in this pathway both stem from the upper small intestine. Thiamine is passed mainly through urine. It is a water-soluble vitamin, which means it dissolves in water and is carried to different parts of the body but is not stored in the body.

PW000037

Pw000037 View Pathway
metabolic

Spermidine and Spermine Biosynthesis

Homo sapiens
The Spermidine and Spermine Biosynthesis pathway highlights the creation of these cruicial polyamines. Spermidine and spermine are produced in many tissues, as they are involved in the regulation of genetic processes from DNA synthesis to cell migration, proliferation, differentiation and apoptosis. These positiviely charged amines interact with negatively charged phosphates in nucleic acids to exert their regulatory effects on cellular processes. Spermidine originates from the action of spermidine synthase, which converts the methionine derivative S-adenosylmethionine and the ornithine derivative putrescine into spermidine 5'-methylthioadenosine. Spermidine is subsequently processed into spermine by spermine synthase in the presence of the aminopropyl donor, S-adenosylmethioninamine.

PW000038

Pw000038 View Pathway
metabolic

Taurine and Hypotaurine Metabolism

Homo sapiens
There is an organic acid known as Taurine, which is a derivative product of sulfhydryl amino acid (which contains sulfur), as well as cysteine. The synthesis or metabolism in mammalian systems of this acid transpires within the pancreas in such a fashion that it utilizes a pathway known as the cysteine sulfinic acid pathway. To put this process in context, its occurrence is often seen in vivo, in hepatocytes, and is fundamental in the cyclical process of recovering bile acids from the intenstine, turning them back into salts and returning them to the bile. In essence the cysteine pathway induces a sulfhydryl group to be oxidized, creating cysteine sulfinic acid, by utilizing the appropriate enzymes (ie cysteine dioxygenase). This new acid undergoes decarboxylation creating a new compound: hypotaurine. This process goes on as Taurine now is subjected to conjugation vis a vis its amino terminal group. This includes acids such as chenodeoxycholic acid and cholic acid, and in turn the formation of bile salts occurs. Moreover, this entire process can be catalyzed via bile acid and a special amino acid N-acetyltransferase.

PW000039

Pw000039 View Pathway
metabolic

Ubiquinone Biosynthesis

Homo sapiens
Ubiquinone is also known as coenzyme Q10. It is a 1,4-benzoquinone, where Q refers to the quinone chemical group, and 10 refers to the isoprenyl chemical subunits. Ubiquinone is a carrier of hydrogen atoms (protons plus electrons) and functions as an ubiquitous coenzyme in redox reactions, where it is first reduced to the enzyme-bound intermediate radical semiquinone and in a second reduction to ubiquinol (Dihydroquinone; CoQH2). Ubiquinone is not tightly bound or covalently linked to any known protein complex but is very mobile. In eukaryotes ubiquinones were found in the inner mito-chondrial membrane and in other membranes such as the endoplasmic reticulum, Golgi vesicles, lysosomes and peroxisomes. The benzoquinone portion of Coenzyme Q10 is synthesized from tyrosine, whereas the isoprene sidechain is synthesized from acetyl-CoA through the mevalonate pathway. The mevalonate pathway is also used for the first steps of cholesterol biosynthesis. The enzyme para-hydroxybenzoate polyprenyltransferase catalyzes the condensation of p-hydroxybenzoate with polyprenyl diphosphate to generate ubiquinone.

PW000040

Pw000040 View Pathway
metabolic

Sulfate/Sulfite Metabolism

Homo sapiens
This pathway illustrates the conversion of sulfite to sulfate (via sulfate oxidase) and subsequent generation of adenylylsulfate (APS) via 3'-phosphoadenosine 5'-phosphosulfate synthase 2. APS is converted to phosphoadenylyl-sulfate (PAPS) via adenylylsulfate kinase. APS can also be regenerated from PAPS by 3'(2'), 5'-bisphosphate nucleotidase 1. PAPS is eventually converted to adenosine bisophosphate (PAP) through the action of several different enzymes including aryl sulfotransferase, chondroitin 4-sulfotransferase 13 and estrone sulfotransferase. The metabolism pathway in question is important for many reasons. Recall, that the sulfite ion is in fact the conjugate base of sulfurous acid. Moreover, this ion is found naturally in one of the worlds most popular beverages, wines. Beyond its natural occurence, sulfite ion had the property of stopping fermentation. As such, the addition of it to products such as wine can be used either as a preservative or to stop the fermentation process at a moment which is of interest. Finally, this preservation property goes beyond merely wines, and finds utility in dried fruits, potatoes, etc.