Loader

Pathways

PathWhiz ID Pathway Meta Data

PW145013

Pw145013 View Pathway
drug action

Repaglinide Drug Metabolism Action Pathway

Homo sapiens

PW128462

Pw128462 View Pathway
metabolic

Replication Test Aug 30

Cannabis sativa

PW124441

Pw124441 View Pathway
drug action

Rescinnamine

Homo sapiens
Rescinnamine is an angiotensin-converting enzyme (ACE) inhibitor for the conversion of angiotensin I into angiotensin II. Angiotensin II is a critical circulating peptide hormone that has powerful vasoconstrictive effects and increases blood pressure. Rescinnamine is used to treat hypertension and high blood pressure as it decreases blood pressure. Rescinnamine is an alkaloid from Rauwolfia serpintina which travels in the blood to inhibit ACE which is from the lungs. Angiotensin has many vasoconstrictive effects by binding to angiotensin II type 1 receptor (AT1) in blood vessels, kidneys, hypothalamus, and posterior pituitary. In blood vessels, AT1 receptors cause vasoconstriction in the tunica media layer of smooth muscle surrounding blood vessels increasing blood pressure. Less angiotensin II that is circulating lowers the constriction of these blood vessels. AT1 receptors in the kidney are responsible for the production of aldosterone which increases salt and water retention which increases blood volume. Less angiotensin II reduces aldosterone production allowing water retention to not increase. AT1 receptors in the hypothalamus are on astrocytes which inhibit the excitatory amino acid transporter 3 from up-taking glutamate back into astrocytes. Glutamate is responsible for the activation of NMDA receptors on paraventricular nucleus neurons (PVN neurons) that lead to thirst sensation. Since angiotensin II levels are lowered, the inhibition of the uptake transporter is not limited decreasing the amount of glutamate activating NMDA on PVN neurons that make the individual crave drinking less. This lowers the blood volume as well. Lastly, the AT1 receptors on posterior pituitary gland are responsible for the release of vasopressin. Vasopressin is an anti-diuretic hormone that cases water reabsorption in the kidney as well as causing smooth muscle contraction in blood vessels increasing blood pressure. Less angiotensin II activating vasopressin release inhibits blood pressure from increasing. Overall, Rescinnamine inhibits the conversion of angiotensin I into angiotensin II, a powerful vasoconstrictor and mediator of high blood pressure so decreasing levels of angiotensin will help reduce blood pressure from climbing in individuals.

PW000233

Pw000233 View Pathway
drug action

Rescinnamine Action Pathway

Homo sapiens
Benazepril, brand name Lotensin, belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Benazepril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form benazeprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.

PW145267

Pw145267 View Pathway
drug action

Rescinnamine Drug Metabolism Action Pathway

Homo sapiens

PW144337

Pw144337 View Pathway
drug action

Reserpine Drug Metabolism Action Pathway

Homo sapiens

PW064778

Pw064778 View Pathway
signaling

Resisrance

Homo sapiens

PW146223

Pw146223 View Pathway
drug action

Resorcinol Drug Metabolism Action Pathway

Homo sapiens

PW146922

Pw146922 View Pathway
drug action

Resorcinol monoacetate Drug Metabolism Action Pathway

Homo sapiens

PW122280

Pw122280 View Pathway
signaling

RET RTK Pathway

Homo sapiens