Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 31 - 40 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0144706

Pw146374 View Pathway

2-mercaptobenzothiazole Drug Metabolism Action Pathway

Drug Action
  • 2-mercaptobenzothiazole

SMP0000137

Pw000061 View Pathway

2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency

2-Methyl-3-hydroxybutyryl CoA dehydrogenase deficiency (Hydroxyl-CoA dehydrogenase deficiency; MHBD) is a rare inborn disease of metabolism caused by a mutation in the HSD17B10 gene which codes for 3-hydroxyacyl-CoA dehydrogenase type-2. A deficiency in this enzyme results in accumulation of L-lactic acid in blood, spinal fluid, and urine; 2-ethylhydracrylic acid, 2-methyl-3-hydroxybutyric acid, and tiglylglycine in urine. Symptoms include cerebal atrophy, motor and mental retardation, overactivity and behavior issues, seizures and progressive neurological defects leading to early death. Treatment includes a high carbohydrate and low protein diet.
Disease

SMP0125658

Pw127223 View Pathway

2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency

2-Methyl-3-hydroxybutyryl CoA dehydrogenase deficiency (Hydroxyl-CoA dehydrogenase deficiency; MHBD) is a rare inborn disease of metabolism caused by a mutation in the HSD17B10 gene which codes for 3-hydroxyacyl-CoA dehydrogenase type-2. A deficiency in this enzyme results in accumulation of L-lactic acid in blood, spinal fluid, and urine; 2-ethylhydracrylic acid, 2-methyl-3-hydroxybutyric acid, and tiglylglycine in urine. Symptoms include cerebal atrophy, motor and mental retardation, overactivity and behavior issues, seizures and progressive neurological defects leading to early death. Treatment includes a high carbohydrate and low protein diet.
Disease

SMP0000576

Pw000552 View Pathway

21-Hydroxylase Deficiency (CYP21)

Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the steps of biosynthesis of cortisol from cholesterol in the adrenal glands, also known as steroidogenesis. 21-hydroxylase deficiency, also known as CYP21 deficiency or CAH1, is an autosomal recessive disorder that accounts for the vast majority of cases of CAH. This deficiency affects cells in the adrenal cortex of the adrenal glands, and due to the deficiency in an enzyme used in many pathways. This prevents the completion of several hormone biosynthesis pathways, including those producing aldosterone and cortisol, and leads to a buildup of their precursors, including 17a-hydroxypregnenolone, which are then processed by the pathways that produce androgen hormones including testosterone. This disorder can vary in severity, depending on the amount of functional enzyme present. The most severe form is known as the salt-wasting form of 21-hydroxylase, and is caused by a complete lack of functional enzyme. This form is called the salt-wasting form, as the lack of aldosterone produced leads to high levels of sodium excreted in the urine, causing infant blood volume to decrease. High potassium levels in blood are also often observed, but if properly diagnosed, saline solution and hydrocortisone can restore normal blood levels and sodium content. In addition, males are typically visually unaffected, but females often possess ambiguous genitalia due to the excess exposure to testosterone during development. The second most severe form is known as the simple virilising form, which does not involve the salt loss of the salt-wasting form, due to a partially functional 21-hydroxylase enzyme. However, the androgen hormones build up similarly, leading to females with some amount of virilisation, or some amount of male characteristics, including ambiguous genitalia. The third and least severe form, known as the non-classical or late onset form, has the highest function in 21-hydroxylase enzymes, and leads to the smallest buildup of androgen hormones. This means that females exhibit little to no virilisation at birth, but as they age can experience male-associated hair growth and baldness, as well as decreased fertility and menstruation irregularities. It can also lead to an early puberty in both males and females, though treatment can help prevent this if it is caught in time.
Disease

SMP0000720

Pw000697 View Pathway

27-Hydroxylase Deficiency

Sterol 27-hydroxylase is a mitochondrial cytochrome P-450 species (CYP27) that catalyzes the first step in the degradation of steroid side chain in cholesterol to produce bile acids in the liver. When there are low concentrations of 27-Hydroxylase, patients will exhibit cerebrotendinous xanthomatosis, an autosomal recessive disorder characterized by the accumulation of cholestanol and cholesterol due to the inability to break down the lipids. The formation of xanthomas (deposits of lipids) in the nervous system and tendons will cause symptoms such as dementia, ataxia, and cataracts. Other symptoms may include damaged liver cells and body tissues.
Disease

SMP0000718

Pw000695 View Pathway

3-beta-Hydroxysteroid Dehydrogenase Deficiency

3-beta-hydroxysteroid dehydrogenase (HSD) deficiency is an extremely rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by an defect in the HSD3B2 gene which encodes for the 3 beta-hydroxysteroid dehydrogenase enzyme, which is responsible for forming cortisol from 11b,17a,21-trihydroxypregnenolone. When the enzyme is not correctly produced, cortisol levels in the cell are lowered, and as cortisol is used in the production of other steroids, it may affect their levels as well. 3-beta-HSD deficiency is characterized by low levels of cortisol produced in the adrenal glands. Symptoms include abnormal genitalia for both males and females, as well as infertility. There is also a more severe salt-wasting form of this deficiency, characterized by dehydration. Treatment for 3-beta-HSD deficiency includes steroid replacement, as well as sex hormone replacement during puberty to allow proper development. Surgery can also be used to correct any genital abnormalities that may occur. It is estimated that 3-beta-HSD deficiency affects less than 1 in 1,000,000 individuals, with around 60 cases reported.
Disease

SMP0125804

Pw127372 View Pathway

3-beta-Hydroxysteroid Dehydrogenase Deficiency

3-beta-hydroxysteroid dehydrogenase (HSD) deficiency is an extremely rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by an defect in the HSD3B2 gene which encodes for the 3 beta-hydroxysteroid dehydrogenase enzyme, which is responsible for forming cortisol from 11b,17a,21-trihydroxypregnenolone. When the enzyme is not correctly produced, cortisol levels in the cell are lowered, and as cortisol is used in the production of other steroids, it may affect their levels as well. 3-beta-HSD deficiency is characterized by low levels of cortisol produced in the adrenal glands. Symptoms include abnormal genitalia for both males and females, as well as infertility. There is also a more severe salt-wasting form of this deficiency, characterized by dehydration. Treatment for 3-beta-HSD deficiency includes steroid replacement, as well as sex hormone replacement during puberty to allow proper development. Surgery can also be used to correct any genital abnormalities that may occur. It is estimated that 3-beta-HSD deficiency affects less than 1 in 1,000,000 individuals, with around 60 cases reported.
Disease

SMP0125660

Pw127225 View Pathway

3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency

3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-Hydroxy-3-methylglutaric acidemia; Leucine metabolism, defect in, HMG-CoA lyase deficiency) is an autosomal recessive disease caused by a mutation in the HMGCL gene which codes for hydroxymethylglutaryl-CoA lyase. A deficiency in this enzyme results in accumulation of 3-hydroxymethylglutaric acid, 3-hydroxyisovaleric acid, 3-methylcrotonylglycine and 3-methylglutaconic acid (cis and trans form), and methylglutaric acid in urine; and ammonia in blood. Symptoms include cardiomyopathy, dehydration, hypotonia, lactic acidosis, and pancreatitis. Treatment includes a low-fat, low-protein, high-carbohydrate diet.
Disease

SMP0000138

Pw000063 View Pathway

3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency

3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-Hydroxy-3-methylglutaric acidemia; Leucine metabolism, defect in, HMG-CoA lyase deficiency) is an autosomal recessive disease caused by a mutation in the HMGCL gene which codes for hydroxymethylglutaryl-CoA lyase. A deficiency in this enzyme results in accumulation of 3-hydroxymethylglutaric acid, 3-hydroxyisovaleric acid, 3-methylcrotonylglycine and 3-methylglutaconic acid (cis and trans form), and methylglutaric acid in urine; and ammonia in blood. Symptoms include cardiomyopathy, dehydration, hypotonia, lactic acidosis, and pancreatitis. Treatment includes a low-fat, low-protein, high-carbohydrate diet.
Disease

SMP0000521

Pw000497 View Pathway

3-Hydroxyisobutyric Acid Dehydrogenase Deficiency

3-Hydroxyisobutyric acid dehydrogenase deficiency (3-hydroxyisobutyric aciduria) is an extremely rare inborn error of metabolism (IEM), potentially caused by numerous mechanisms. It is currently thought to be autosomal recessively inherited. At least two cases of 3-hydroxyisobutyric aciduria were determined to be caused by a mutation in the ALDH6A1 gene, which encodes acylating methylmalonate-semialdehyde dehydrogenase. This enzyme converts 2-methyl-3-oxopropanoate, CoA and water into propanoyl-CoA, using NAD+ as an oxidizing agent, and producing a hydrogen ion and hydrogencarbonate as byproducts. Other forms of 3-hydroxyisobutyric aciduria may be caused by a mutation in the gene encoding 3-hydroxyisobutyrate dehydrogenase, which forms (S)-methylmalonic acid semialdehyde from (S)-3-hydroxyisobutyric acid. This mutation leads to an accumulation of (S)-3-hydroxyisobutyric acid, as no other processes in the pathway use it. 3-hydroxyisobutyric aciduria is characterized by elevated levels of 3-hydroxyisobutyric acid excreted in the urine. Symptoms of the disorder include dysmorphic features, developmental delays and intellectual disabilities. Treatments are not currently well researched due to the rarity of the condition, but protein-restricted diets may be helpful. It is estimated that 3-hydroxyisobutyric aciduria affects less than 1 in 1,000,000 people, with only 12 cases having been reported by 2006.
Disease
Showing 31 - 40 of 65006 pathways