Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.

Filter by Pathway Type:



Showing 49821 - 49830 of 49827 pathways
SMPDB ID Pathway Chemical Compounds Proteins

SMP0123330

Pw124786 View Pathway
Metabolic

Acylcarnitine 3-methylbut-2-enoylcarnitine

3-methylbut-2-enoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 3-methylbut-2-enoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 3-methylbut-2-enoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 3-methylbut-2-enoyl-CoA reacts with L-carnitine to form 3-methylbut-2-enoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 3-methylbut-2-enoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 3-methylbut-2-enoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 3-methylbut-2-enoyl-CoA and L-carnitine. 3-methylbut-2-enoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 3-methylbut-2-enoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

SMP0123350

Pw124806 View Pathway
Metabolic

Acylcarnitine 6-hydroxyheptanoylcarnitine

6-hydroxyheptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 6-hydroxyheptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 6-hydroxyheptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 6-hydroxyheptanoyl-CoA reacts with L-carnitine to form 6-hydroxyheptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 6-hydroxyheptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 6-hydroxyheptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 6-hydroxyheptanoyl-CoA and L-carnitine. 6-hydroxyheptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 6-hydroxyheptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

SMP0123364

Pw124820 View Pathway
Metabolic

Acylcarnitine 5-hydroxyoctanoylcarnitine

5-hydroxyoctanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxyoctanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxyoctanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxyoctanoyl-CoA reacts with L-carnitine to form 5-hydroxyoctanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxyoctanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxyoctanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxyoctanoyl-CoA and L-carnitine. 5-hydroxyoctanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxyoctanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

SMP0123369

Pw124825 View Pathway
Metabolic

Acylcarnitine 3-octenoylcarnitine

3-octenoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 3-octenoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 3-octenoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 3-octenoyl-CoA reacts with L-carnitine to form 3-octenoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 3-octenoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 3-octenoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 3-octenoyl-CoA and L-carnitine. 3-octenoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 3-octenoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

SMP0124429

Pw125885 View Pathway
Metabolic

Acylcarnitine tetracosa-6,9,12,15,18,21-hexaenoylcarnitine

Tetracosa-6,9,12,15,18,21-hexaenoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. First,tetracosa-6,9,12,15,18,21-hexaenoic acid is transported into the cell via the long-chain fatty acid transport protein 1 (FATP1), where it undergoes a reaction to formtetracosa-6,9,12,15,18,21-hexaenoyl-CoA, facilitated by the Long-chain fatty-acid CoA ligase 1 protein, which adds a CoA to the compound. tetracosa-6,9,12,15,18,21-hexaenoyl-CoA then enters a reaction with L-carnitine, which is transported into the cell by the organic cation/carnitine transporter 2, to form tetracosa-6,9,12,15,18,21-hexaenoylcarnitine, catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane, and as the reaction takes place, the tetracosa-6,9,12,15,18,21-hexaenoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, tetracosa-6,9,12,15,18,21-hexaenoylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, tetracosa-6,9,12,15,18,21-hexaenoylcarnitine and CoA are catalyzed by the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form tetracosa-6,9,12,15,18,21-hexaenoyl-CoA and L-carnitine. Tetracosa-6,9,12,15,18,21-hexaenoyl-CoA then enters into mitochondrial beta-oxidation to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine and CoA in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, preventing tetracosa-6,9,12,15,18,21-hexaenoyl-CoA from forming tetracosa-6,9,12,15,18,21-hexaenoylcarnitine and preventing it from being transported into the mitochondria. Malonyl-CoA can also react to form acetyl-CoA, in a reaction that removes a carbon dioxide molecule catalyzed by malonyl-CoA decarboxylase.

SMP0124456

Pw125912 View Pathway
Metabolic

Acylcarnitine (2E)-Glutaconylcarnitine

(2E)-Glutaconylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. First,(2E)-glutaconic acid is transported into the cell via the long-chain fatty acid transport protein 1 (FATP1), where it undergoes a reaction to form(2E)-glutaconyl-CoA, facilitated by the Long-chain fatty-acid CoA ligase 1 protein, which adds a CoA to the compound. (2E)-glutaconyl-CoA then enters a reaction with L-carnitine, which is transported into the cell by the organic cation/carnitine transporter 2, to form (2E)-glutaconylcarnitine, catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane, and as the reaction takes place, the (2E)-glutaconylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, (2E)-glutaconylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (2E)-glutaconylcarnitine and CoA are catalyzed by the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (2E)-glutaconyl-CoA and L-carnitine. (2E)-Glutaconyl-CoA then enters into mitochondrial beta-oxidation to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine and CoA in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, preventing (2E)-glutaconyl-CoA from forming (2E)-glutaconylcarnitine and preventing it from being transported into the mitochondria. Malonyl-CoA can also react to form acetyl-CoA, in a reaction that removes a carbon dioxide molecule catalyzed by malonyl-CoA decarboxylase.

SMP0124716

Pw126201 View Pathway
Metabolic

1-Methylhistidine Metabolism

Methylhistidine is a modified amino acid that is produced in myocytes during the methylation of actin and myosin. It is also formed from the methylation of L-histidine, which takes the methyl group from S-adenosylmethionine and forms S-adenosylhomocysteine as a byproduct. After its formation in the myocytes, methylhistidine enters the blood stream and travels to the kidneys, where it is excreted in the urine. Methylhistidine is present in the blood and urine in higher concentrations after skeletal muscle protein breakdown, which can occur due to disease or injury. Because of this, it can be used to judge how much muscle breakdown is occurring. Methylhistidine levels are also affected by diet, and may differ between vegetarian diets and those containing meats.
Showing 49821 - 49830 of 49827 pathways