Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 591 - 600 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0000624

Pw000600 View Pathway

Methadone Metabolism Pathway

Methadone exerts its analgesic by acting on the mu-opioid receptor of sensory neurons. Binding to the mu-opioid receptor activates associated G(i) proteins. These subsequently act to inhibit adenylate cyclase, reducing the level of intracellular cAMP. G(i) also activates potassium channels and inactivates calcium channels causing the neuron to hyperpolarize. The end result is decreased nerve conduction and reduced neurotransmitter release, which blocks the perception of pain signals. Methadone further acts as an antagonist at the NMDA receptor, reducting calcium influx and neuronal excitability.
Drug Metabolism

SMP0000625

Pw000601 View Pathway

Imipramine

Imipramine is a tricyclic antidepressant that exerts its therapeutic effects by inhibiting norepinephrine and serotonin reuptake in the brain. It does so by competing for the same binding site as norepinephrine on the sodium-dependent noradraneline transporter (SLC6A2) and by competing with serotonin for binding to the sodium-dependent serotonin transporter (SLC6A4). This increases the concentrations of both norepinephrine and serotonin in their respective synapses and reverses the state of low concentrations of both neurotransmitters found in depression. Higher concentrations of norepinephrine and serotonin have also been shown to have long-term neuromodulatory effects. Binding of these neurotransmitters to their respective receptors activate adenylate cyclase, which produces cAMP. cAMP activates protein kinase A which activates cAMP-responsive binding protein 1 (CREB-1). CREB-1 enters the nucleus and affects transcription of brain-derived neurotrophic factor (BDNF). BDNF subsequently stimulates neurogenesis, which may contribute to the long-term reversal of depression. Imipramine is metabolized in the liver mostly through N-demethylation by CYP2C19 into desipramine. Desipramine is an active metabolite and also has similar actions to imipramine on norepinephrine and serotonin reuptake.
Drug Metabolism

SMP0000626

Pw000602 View Pathway

Desipramine Metabolism Pathway

Desipramine is a tricyclic antidepressant that exerts its therapeutic effects by inhibiting norepinephrine and serotonin reuptake in the brain. It does so by competing for the same binding site as norepinephrine on the sodium-dependent noradraneline transporter (SLC6A2) and by competing with serotonin for binding to the sodium-dependent serotonin transporter (SLC6A4). This increases the concentrations of both norepinephrine and serotonin in their respective synapses and reverses the state of low concentrations of both neurotransmitters found in depression. Higher concentrations of norepinephrine and serotonin have also been shown to have long-term neuromodulatory effects. Binding of these neurotransmitters to their respective receptors activate adenylate cyclase, which produces cAMP. cAMP activates protein kinase A which activates cAMP-responsive binding protein 1 (CREB-1). CREB-1 enters the nucleus and affects transcription of brain-derived neurotrophic factor (BDNF). BDNF subsequently stimulates neurogenesis, which may contribute to the long-term reversal of depression.
Drug Metabolism

SMP0000627

Pw000603 View Pathway

Citalopram Metabolism Pathway

Citalopram is a selective serotonin reuptake inhibitor that exerts antidepressive effects by selectively inhibiting serotonin reuptake in the brain. It does so by competing for the same binding site as serotonin on the the sodium-dependent serotonin transporter (SLC6A4). This increases the concentrations of serotonin in the synaptic cleft and reverses the state of low concentration seen in depression. Higher concentration of serotonin has also been shown to have long-term neuromodulatory effects. Binding of serotonin to certain serotonin receptors activate adenylate cyclase, which produces cAMP. cAMP activates protein kinase A which activates cAMP-responsive binding protein 1 (CREB-1). CREB-1 enters the nucleus and affects transcription of brain-derived neurotrophic factor (BDNF). BDNF subsequently stimulates neurogenesis, which may contribute to the long-term reversal of depression.
Drug Metabolism

SMP0000628

Pw000604 View Pathway

Nicotine Metabolism Pathway

Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nicotinic acetylcholine receptors on dopaminergic neurons in the cortico-limbic pathways. This causes the channel to open and allow conductance of multiple cations including sodium, calcium, and potassium. This leads to depolarization, which activates voltage-gated calcium channels and allows more calcium to enter the axon terminal. Calcium stimulates vesicle trafficking towards the plasma membrane and the release of dopamine into the synapse. Dopamine binding to its receptors is responsible the euphoric and addictive properties of nicotine. Nicotine also binds to nicotinic acetylcholine receptors on the chromaffin cells in the adrenal medulla. Binding opens the ion channel allowing influx of sodium, causing depolarization of the cell, which activates voltage-gated calcium channels. Calcium triggers the release of epinephrine from intracellular vesicles into the bloodstream, which causes vasoconstriction, increased blood pressure, increased heart rate, and increased blood sugar.
Drug Metabolism

SMP0000629

Pw000605 View Pathway

Adefovir Dipivoxil Metabolism Pathway

Adefovir dipivoxil is an ester prodrug of adefovir, a nucleotide analogue used in the treatment of chronic hepatitis B. Adefovir dipivoxil is taken up into the liver cell and is cleaved into adefovir by intracellular esterases. Adefovir is subsequently phosphorylated first by adenylate kinases and then by nucleoside diphosphate kinases into adefovir diphosphate. Adefovir diphosphate is an analogue of deoxyadenosine triphosphate (dATP) and competes with dATP for binding to the viral DNA polymerase and subsequent incorporation into the growing DNA strand. Once incorporated into the DNA, adefovir causes chain termination, thus preventing viral replication.
Drug Metabolism

SMP0000630

Pw000606 View Pathway

Tenofovir Metabolism Pathway

Tenofovir is a nucleotide analogue used in the treatment of HIV and chronic hepatitis B. It is taken up into the cell and is subsequently phosphorylated first by adenylate kinases and then by nucleoside diphosphate kinases into tenofovir diphosphate. Tenofovir diphosphate is an analogue of deoxyadenosine triphosphate (dATP) and competes with dATP for binding to the viral DNA polymerase and subsequent incorporation into the growing DNA strand. Once incorporated into the DNA, tenofovir causes chain termination, thus preventing viral replication.
Drug Metabolism

SMP0000631

Pw000607 View Pathway

Prednisone Metabolism Pathway

Prednisone is a medication that is used to suppress the immune system. It works by interrupting cytokine pathways type 1 and type 2. It is administered orally, through tablet, or solution (concentrated or non-concentrated). Prednisone is a glucocorticoid, and as well as being used for immune system suppression, it is used for its anti inflammatory properties. It exerts these properties by binding to glucocorticoid receptors in the cell, which inhibits inflammatory cells. This prevents inflammatory mediators from being expressed.
Drug Metabolism

SMP0000632

Pw000608 View Pathway

Prednisolone Metabolism Pathway

Prednisolone is a synthetic glucocorticoid that is used clinically for its anti-inflammatory properties. Prednisolone diffuses passively across the cell membrane, where it binds to glucocorticoid receptors in the cytoplasm. Upon binding, the glucocorticoid receptor (GR) dissociates from heat shock protein 90, and translocate into the nucleus. In the nucleus, GR dimers can bind to glucocorticoid response element (GRE) in the promoter region of anti-inflammatory genes, which activates their transcription. GRs also inhibit transcription of inflammatory mediators by binding to negative GRE (nGRE). GRs further interact with the transcription factors cAMP-responsive element binding protein and NF-kappa-B, and inihibit their activation of inflammatory gene transcription. GRs also recruit histone deacetylase 2 to inflammatory gene loci on DNA, which leads to DNA condensation and suppression of gene expression.
Drug Metabolism

SMP0000633

Pw000609 View Pathway

Felbamate Metabolism Pathway

Felbamate is metabolized in the liver. One route of metabolism consists of the hydroxylation to 2-hydroxyfelbamate or p-hydroxyfelbamate, which is catalyzed by CYP2E1 and CYP3A4. Moreover, felbamate can be transformed to 2-phenyl-2-propanediol monocarbamate. This metabolite is then converted to 3-carbamoyl-2phenylpropionaldehyde via alchol dehydrogenase 1A, which in turn can be transformed into three possible metabolites: atropaldehyde, 3-carbamoyl-2-phenylpropionic acid (catalyzed by the dimeric NADP-preferring aldehyde dehydrogenase), and 4-hydroxy-5-phenyltetrahydro-1,3-oxazin-2-one. The latter is further converted by the alcohol dehydrogenase 1A to 5-phenyl-1,3-oxazinane-2,4-dione, which is subsequently transformed to 3-carbamoyl-2-phenylpropionic acid.
Drug Metabolism
Showing 591 - 600 of 65006 pathways