Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 1 - 10 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0000575

Pw000551 View Pathway

11-beta-Hydroxylase Deficiency (CYP11B1)

11-beta-Hydroxylase Deficiency, also called congenital adrenal hyperplasia (CAH), is an autosomal recessive disorder and caused by a defective 11-beta-hydroxylase. 11-beta-hydroxylase catalyzes the conversion of cortexolone into cortisol which is useful for maintaining blood sugar levels and suppressing inflammation. This disorder is characterized by a large accumulation of cortexolone in the endoplasmic reticulum (ER). Symptoms of the disorder include abnormality of hair growth rate and menstrual cycle. It is estimated that 11-beta-hydroxylase deficiency affects 1 in 100,000 to 200,000 newborns.
Disease

SMP0125800

Pw127367 View Pathway

11-beta-Hydroxylase Deficiency (CYP11B1)

11-beta-Hydroxylase Deficiency, also called congenital adrenal hyperplasia (CAH), is an autosomal recessive disorder and caused by a defective 11-beta-hydroxylase. 11-beta-hydroxylase catalyzes the conversion of cortexolone into cortisol which is useful for maintaining blood sugar levels and suppressing inflammation. This disorder is characterized by a large accumulation of cortexolone in the endoplasmic reticulum (ER). Symptoms of the disorder include abnormality of hair growth rate and menstrual cycle. It is estimated that 11-beta-hydroxylase deficiency affects 1 in 100,000 to 200,000 newborns.
Disease

SMP0000566

Pw000542 View Pathway

17-alpha-Hydroxylase Deficiency (CYP17)

17-alpha-hydroxylase deficiency, also known as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency or congenital adrenal hyperplasia type 5, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by a mutation in the CYP17A1 gene which encodes the enzyme steroid 17-alpha-hydroxylase. This enzyme hydroxylates both progesterone and pregnenolone into 17-hydroxyprogesterone and 17a-hydroxypregnenolone respectively in the mitochondria, as well as hydroxylating 21-deoxycortisol to 11b-hydroxyprogesterone within the endoplasmic reticulum. When mutated, it leads to an accumulation of pregnenolone, progesterone, deoxycorticosterone and 11-dehydrocorticosterone throughout the cell. 17-alpha hydroxylase deficiency is characterized by a deficiency of sex steroids, as well as glucocorticoids. Symptoms include male undervirilization, as well as lack of development during puberty including amenorrhea for females. Low levels of potassium in the blood due to the increased levels of mineralocorticoids can occur, as well as hypertension. Treatment with dexamethasone has been able to normalize blood pressure and blood potassium levels. It is estimated that 17-alpha-hydroxylase deficiency affects 1 in 1,000,000 individuals.
Disease

SMP0000356

Pw000059 View Pathway

17-beta Hydroxysteroid Dehydrogenase III Deficiency

17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.
Disease

SMP0125781

Pw127348 View Pathway

17-beta Hydroxysteroid Dehydrogenase III Deficiency

17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.
Disease

SMP0125703

Pw127270 View Pathway

2-Aminoadipic 2-Oxoadipic Aciduria

2-Aminoadipic 2-oxoadipic aciduria is a disorder of lysine metabolism caused by a defective DHTKD1 gene. DHTKD1 is predicted to code for a component of a supercomplex similar to the 2-oxoglutarate dehydrogenase complex (OGDHc) which catalyzes the conversion of 2-oxoadipate into glutaryl-CoA. This disease is characterized by a large accumulation of 2-oxoadipate and 2-hydroxyadipate in the urine. Symptoms of the disease include mild to severe intellectual disability, developmental delay, ataxia, muscular hypotonia, and epilepsy. However, most cases are asymptomatic.
Disease

SMP0000719

Pw000696 View Pathway

2-Aminoadipic 2-Oxoadipic Aciduria

2-Aminoadipic 2-oxoadipic aciduria is a disorder of lysine metabolism caused by a defective DHTKD1 gene. DHTKD1 is predicted to code for a component of a supercomplex similar to the 2-oxoglutarate dehydrogenase complex (OGDHc) which catalyzes the conversion of 2-oxoadipate into glutaryl-CoA. This disease is characterized by a large accumulation of 2-oxoadipate and 2-hydroxyadipate in the urine. Symptoms of the disease include mild to severe intellectual disability, developmental delay, ataxia, muscular hypotonia, and epilepsy. However, most cases are asymptomatic.
Disease

SMP0000136

Pw000212 View Pathway

2-Hydroxyglutric Aciduria (D and L Form)

L-2-Hydroxyglutaric Aciduria (D-2-Hydroxyglutaric Aciduria ) is an autosomal recessive disease caused by a mutation in the L2HGDH gene which codes for L-2-Hydroxygluarate dehydrogenase. A deficiency in this enzyme results in accumulation of L-2-Hydroxyglutaric acid in plasma, spinal fluid, and urine; and L-lysine in plasma and spinal fluid. Symptoms, which present at birth, include ataxia, hypotonia, mental retardation, and seizures. Premature death often results. D-2-Hydroxyglutaric Aciduria is an autosomal recessive disease caused by a mutation in the D2HGDH gene which does for D-2-Hydroxygluarate dehydrogenase. A deficiency in this enzyme results in accumulation of D-2-Hydroxyglutaric acid in plasma, spinal fluid, and urine; oxoglutaric acid in urine; and gabba-aminobutyric acid in spinal fluid. Symptoms, which present at birth, include ataxia, hypotonia, mental retardation, and seizures. Premature death often results.
Disease

SMP0000549

Pw000525 View Pathway

2-Ketoglutarate Dehydrogenase Complex Deficiency

2-Ketoglutarate dehydrogenase complex deficiency, also known as alpha-ketoglutarate dehydrogenase deficiency or oxoglutaric aciduria, is an autosomal recessive disorder of the Krebs cycle caused by a defective oxoglutarate dehydrogenase complex (OGDC). OGDC catalyzes the conversion of 2-ketoglutarate into succinyl-CoA. This disorder is characterized by a large accumulation of 2-ketoglutarate in the urine. Symptoms of the disorder include opisthotonus, ataxia, developmental delay, and seizures.
Disease

SMP0125755

Pw127322 View Pathway

2-Ketoglutarate Dehydrogenase Complex Deficiency

2-Ketoglutarate dehydrogenase complex deficiency, also known as alpha-ketoglutarate dehydrogenase deficiency or oxoglutaric aciduria, is an autosomal recessive disorder of the Krebs cycle caused by a defective oxoglutarate dehydrogenase complex (OGDC). OGDC catalyzes the conversion of 2-ketoglutarate into succinyl-CoA. This disorder is characterized by a large accumulation of 2-ketoglutarate in the urine. Symptoms of the disorder include opisthotonus, ataxia, developmental delay, and seizures.
Disease
Showing 1 - 10 of 20449 pathways