Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Gemcitabine Metabolism Pathway (old)
Homo sapiens
Drug Metabolism Pathway
Gemcitabine is a cytidine analogue used in the treatment of certain cancers. Gemcitabine enters the cell via sodium nucleoside co-transporters (SLC29A1, SLC28A1, and SLC28A3), where it acts through multiple mechanisms to produce a cytotoxic effect. Gemcitabine is phosphorylated into gemcitabine monophosphate by deoxycytidine kinase, which is then subsequently phosphorylated into the diphosphate and triphosphate nucleotides by UMP-CMP kinase and nucleoside diphosphate kinase respectively. Gemcitabine diphosphate inhibits ribonucleoside-diphosphate reductase, a crucial enzyme in the conversion of ribonucleotides into deoxyribonucleotides for DNA synthesis. Gemcitabine triphosphate on the other hand can be incorporated into DNA, causing chain termination. Furthermore, gemcitabine monophosphate can be deaminated into difluoro-deoxyuridine monophosphate, which inhibits thymidylate synthase, an enzyme involved in the production of dTTP for DNA synthesis.
References
Gemcitabine Pathway (old) References
Plunkett W, Huang P, Searcy CE, Gandhi V: Gemcitabine: preclinical pharmacology and mechanisms of action. Semin Oncol. 1996 Oct;23(5 Suppl 10):3-15.
Pubmed: 8893876
Wong A, Soo RA, Yong WP, Innocenti F: Clinical pharmacology and pharmacogenetics of gemcitabine. Drug Metab Rev. 2009;41(2):77-88. doi: 10.1080/03602530902741828.
Pubmed: 19514966
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings