Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Desipramine Metabolism Pathway
Homo sapiens
Drug Metabolism Pathway
Desipramine is a tricyclic antidepressant that exerts its therapeutic effects by inhibiting norepinephrine and serotonin reuptake in the brain. It does so by competing for the same binding site as norepinephrine on the sodium-dependent noradraneline transporter (SLC6A2) and by competing with serotonin for binding to the sodium-dependent serotonin transporter (SLC6A4). This increases the concentrations of both norepinephrine and serotonin in their respective synapses and reverses the state of low concentrations of both neurotransmitters found in depression. Higher concentrations of norepinephrine and serotonin have also been shown to have long-term neuromodulatory effects. Binding of these neurotransmitters to their respective receptors activate adenylate cyclase, which produces cAMP. cAMP activates protein kinase A which activates cAMP-responsive binding protein 1 (CREB-1). CREB-1 enters the nucleus and affects transcription of brain-derived neurotrophic factor (BDNF). BDNF subsequently stimulates neurogenesis, which may contribute to the long-term reversal of depression.
References
Desipramine Pathway References
Norpramin. (2009). e-CPS (online version of Compendium of Pharmaceuticals and Specialties). Retrieved December 23, 2009.
Shelton RC: The dual-action hypothesis: does pharmacology matter? J Clin Psychiatry. 2004;65 Suppl 17:5-10.
Pubmed: 15600376
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings