Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Isoleucine Degradation
Arabidopsis thaliana
Metabolic Pathway
The degradation of isoleucine starts either in the mitochondria or the cytosol. L-isoleucine reacts with 2-oxoglutarate through a branch-chain amino acid aminotransferase resulting in the release of L-glutamate and 3-methyl-2-oxopentanoate. The latter compound reacts with 2-oxoisovalerate carboxy-lyase resulting in the release of carbon dioxide and methylbutanoyl. Methylbutanol reacts with oxidized flavoproteins resulting in the release of a reduced flavoprotein and tiglyl-CoA. The latter then reacts with water resulting in the release of 2-methyl-3-hydroxybutyryl-CoA. The latter compound reacts with NAD resulting in the release of NADH, hydrogen ion and 2-methylacetoacetyl-CoA. The latter then reacts with a Coenzyme A resulting in the release of propanoyl-CoA and acetyl-CoA. This degradation pathways may be an important detoxification mechanism to prevent the build up of branched chain aminoacids and their derived alpha-keto acids which are cytotoxic.
References
Isoleucine Degradation References
Binder S: Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana. Arabidopsis Book. 2010;8:e0137. doi: 10.1199/tab.0137. Epub 2010 Aug 23.
Pubmed: 22303262
Diebold R, Schuster J, Daschner K, Binder S: The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol. 2002 Jun;129(2):540-50. doi: 10.1104/pp.001602.
Pubmed: 12068099
Fujiki Y, Sato T, Ito M, Watanabe A: Isolation and characterization of cDNA clones for the e1beta and E2 subunits of the branched-chain alpha-ketoacid dehydrogenase complex in Arabidopsis. J Biol Chem. 2000 Feb 25;275(8):6007-13.
Pubmed: 10681595
Gerbling H, Gerhardt B: Oxidative decarboxylation of branched-chain 2-oxo Fatty acids by higher plant peroxisomes. Plant Physiol. 1988 Sep;88(1):13-5.
Pubmed: 16666252
Gerbling H, Gerhardt B: Peroxisomal degradation of branched-chain 2-oxo acids. Plant Physiol. 1989 Dec;91(4):1387-92.
Pubmed: 16667190
Schuster J, Binder S: The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol. 2005 Jan;57(2):241-54. doi: 10.1007/s11103-004-7533-1.
Pubmed: 15821880
Taylor NL, Heazlewood JL, Day DA, Millar AH: Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol. 2004 Feb;134(2):838-48. doi: 10.1104/pp.103.035675. Epub 2004 Feb 5.
Pubmed: 14764908
Chen W, Taylor NL, Chi Y, Millar AH, Lambers H, Finnegan PM: The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism. Plant Cell Environ. 2014 Mar;37(3):684-95. doi: 10.1111/pce.12187. Epub 2013 Nov 11.
Pubmed: 23961884
Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ: The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J. 2006 Sep;47(5):751-60. doi: 10.1111/j.1365-313X.2006.02826.x.
Pubmed: 16923016
Knill T, Schuster J, Reichelt M, Gershenzon J, Binder S: Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol. 2008 Mar;146(3):1028-39. doi: 10.1104/pp.107.111609. Epub 2007 Dec 27.
Pubmed: 18162591
Lutziger I, Oliver DJ: Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis. Plant Physiol. 2001 Oct;127(2):615-23.
Pubmed: 11598235
Rubio S, Larson TR, Gonzalez-Guzman M, Alejandro S, Graham IA, Serrano R, Rodriguez PL: An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment. Plant Physiol. 2006 Mar;140(3):830-43. doi: 10.1104/pp.105.072066. Epub 2006 Jan 13.
Pubmed: 16415216
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings