Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Leucine Biosynthesis
Arabidopsis thaliana
Metabolic Pathway
Leucine biosynthesis involves a five-step conversion process starting with the valine precursor 2-keto-isovalerate interacting with acetyl-CoA and water through a 2-isopropylmalate synthase resulting in Coenzyme A, hydrogen Ion and 2-isopropylmalic acid. The latter compound reacts with isopropylmalate isomerase which dehydrates the compound resulting in a Isopropylmaleate. This compound reacts with water through a isopropylmalate isomerase resulting in 3-isopropylmalate. This compound interacts with a NAD-driven D-malate / 3-isopropylmalate dehydrogenase results in 2-isopropyl-3-oxosuccinate. This compound interacts spontaneously with hydrogen resulting in the release of carbon dioxide and ketoleucine. Ketoleucine interacts in a reversible reaction with L-glutamic acid through a branched-chain amino-acid aminotransferase resulting in Oxoglutaric acid and L-leucine. L-leucine can then be exported outside the cytoplasm through a transporter: L-amino acid efflux transporter. In the final step, ketoleucine can be catalyzed to form L-leucine by branched-chain amino-acid aminotransferase (IlvE) and tyrosine aminotransferase (TryB). L-Glutamic acid can also be transformed into oxoglutaric acid by these two enzymes. Tyrosine aminotransferase can be suppressed by lecuine, and inhibited by 2-keto-isovarlerate and its end product, tyrosine. 2-ketoisocaproate can not be introduced if 2-keto-isovarlerate inhibit TyrB and IlvE is absent.
References
Leucine Biosynthesis References
Binder S: Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana. Arabidopsis Book. 2010;8:e0137. doi: 10.1199/tab.0137. Epub 2010 Aug 23.
Pubmed: 22303262
Dey, P.M., Harborne, J.B. Plant Biochemistry. Academic Press, Inc., San Diego, USA. (1997)
Diebold R, Schuster J, Daschner K, Binder S: The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol. 2002 Jun;129(2):540-50. doi: 10.1104/pp.001602.
Pubmed: 12068099
Mourad G, Williams D, King J: A double mutant allele, csr1-4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics. Planta. 1995;196(1):64-8.
Pubmed: 7767237
Smith JK, Schloss JV, Mazur BJ: Functional expression of plant acetolactate synthase genes in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4179-83.
Pubmed: 16594052
de Kraker JW, Luck K, Textor S, Tokuhisa JG, Gershenzon J: Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branchpoint step in the biosynthesis of leucine. Plant Physiol. 2007 Feb;143(2):970-86. doi: 10.1104/pp.106.085555. Epub 2006 Dec 22.
Pubmed: 17189332
Knill T, Reichelt M, Paetz C, Gershenzon J, Binder S: Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation. Plant Mol Biol. 2009 Oct;71(3):227-39. doi: 10.1007/s11103-009-9519-5. Epub 2009 Jul 14.
Pubmed: 19597944
Nozawa A, Takano J, Miwa K, Nakagawa Y, Fujiwara T: Cloning of cDNAs encoding isopropylmalate dehydrogenase from Arabidopsis thaliana and accumulation patterns of their transcripts. Biosci Biotechnol Biochem. 2005 Apr;69(4):806-10. doi: 10.1271/bbb.69.806.
Pubmed: 15849421
Rubio S, Larson TR, Gonzalez-Guzman M, Alejandro S, Graham IA, Serrano R, Rodriguez PL: An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment. Plant Physiol. 2006 Mar;140(3):830-43. doi: 10.1104/pp.105.072066. Epub 2006 Jan 13.
Pubmed: 16415216
Sawada Y, Kuwahara A, Nagano M, Narisawa T, Sakata A, Saito K, Hirai MY: Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol. 2009 Jul;50(7):1181-90. doi: 10.1093/pcp/pcp079. Epub 2009 Jun 3.
Pubmed: 19493961
Schuster J, Binder S: The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol. 2005 Jan;57(2):241-54. doi: 10.1007/s11103-004-7533-1.
Pubmed: 15821880
Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S: Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell. 2006 Oct;18(10):2664-79. doi: 10.1105/tpc.105.039339. Epub 2006 Oct 20.
Pubmed: 17056707
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings