Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
TCA cycle
Arabidopsis thaliana
Metabolic Pathway
The TCA pathway, also known as the citric acid cycle is a catabolic pathway of aerobic respiration. This pathway generates energy in the cell.
The cycle can start from Acetyl-CoA interacting with Oxalacetic acid and water through a citrate synthase monomer resulting in a hydrogen ion, CoA and a Citric Acid. The latter compound is dehydrated by a Citrate hydro-lyase resulting in the release of water and a cis-Aconitic acid. This compound is then hydrated through a Citrate hydro-lyase resulting in a D-threo-Isocitric acid. This compound is decarboxylated by an NADP dependent Citrate dehydrogenase, resulting in a release of carbon dioxide and NADPH and Oxoglutaric acid. The oxoglutaric acid interacts with a Coenzyme A through a NAD driven 2-oxoglutarate dehydrogenase resulting in a release of carbon dioxide, an NADH and succinyl-CoA. The succinyl-CoA interacts with a phosphate and an ADP through a 2-oxoglutarate dehydrogenase resulting in a CoA, an ATP and Succinic Acid. Succinic acid interacts with a ubiquinone, in this case a ubiquinone 1 through a succinate:quinone oxidoreductase resulting in an ubiquinol, in this case a ubiquinol-1 and a fumaric acid.
The fumaric acid interacts with water through a fumarase hydratase resulting in a L-Malic acid.This compound can either interact with quinone through a malate:quinone oxidoreductase resulting in a release of hydroquinone and oxalacetic acid, or it can react with an NAD through a malate dehydrogenase resulting in a hydrogen ion, NADH and Oxalacetic acid.
References
TCA cycle References
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings