Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Phosphatidylethanolamine Biosynthesis PE(24:1(15Z)/18:1(9Z))
Homo sapiens
Metabolic Pathway
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
References
Phosphatidylethanolamine Biosynthesis PE(24:1(15Z)/18:1(9Z)) References
Alatorre-Cobos F, Cruz-Ramirez A, Hayden CA, Perez-Torres CA, Chauvin AL, Ibarra-Laclette E, Alva-Cortes E, Jorgensen RA, Herrera-Estrella L: Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. J Exp Bot. 2012 Sep;63(14):5203-21. doi: 10.1093/jxb/ers180. Epub 2012 Jul 12.
Pubmed: 22791820
Henneberry AL, Wistow G, McMaster CR: Cloning, genomic organization, and characterization of a human cholinephosphotransferase. J Biol Chem. 2000 Sep 22;275(38):29808-15. doi: 10.1074/jbc.M005786200.
Pubmed: 10893425
Gallego-Ortega D, Ramirez de Molina A, Ramos MA, Valdes-Mora F, Barderas MG, Sarmentero-Estrada J, Lacal JC: Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment. PLoS One. 2009 Nov 12;4(11):e7819. doi: 10.1371/journal.pone.0007819.
Pubmed: 19915674
This pathway was generated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Generated from PW030608
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings