Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Androstenedione Metabolism
Mus musculus
Metabolic Pathway
Androstenedione is an endogenous weak androgen steroid hormone that is a precursor of testosterone and other androgens, as well as of estrogens like estrone . Its metabolism occurs primarily in the endoplasmic reticulum (membrane-associated enzymes are coloured dark green in the image). Conversion of androstenedione to testosterone requires the enzyme testosterone 17-beta-dehydrogenase 3. Conversion of androstenedione to estrone involves three successive reactions catalyzed by the enzyme aromatase (cytochrome P450 19A1). Androstenedione can also be converted into etiocholanolone glucuronide, androsterone glucuronide, and adrenosterone. The three-reaction subpathway to synthesize etiocholanolone glucuronide begins with the enzyme 3-oxo-5-beta-steroid 4-dehydrogenase catalyzing the conversion of androstenedione to etiocholanedione. This is followed by the conversion of etiocholanedione to etiocholanolone which is catalyzed by aldo-keto reductase family 1 member C4. Lastly, the large membrane-associated multimer UDP-glucuronosyltransferase 1-1 catalyzes the conversion of etiocholanolone to etiocholanolone glucuronide. The three-reaction subpathway to synthesize androsterone glucuronide begins with the conversion of androstenedione to androstanedione via 3-oxo-5-alpha-steroid 4-dehydrogenase 1. Anstrostanedione is then converted into androsterone via aldo-keto reductase family 1 member C4. The last reaction to form androsterone glucuronide is catalyzed by the large multimer UDP-glucuronosyltransferase 1-1. The two-reaction subpathway to synthesize adrenosterone begins in the mitochondrial inner membrane where androstenedione is first converted into 11beta-hydroxyandrost-4-ene-3,17-dione by the enzyme cytochrome P450 11B1. Following transport to the endoplasmic reticulum, 11beta-hydroxyandrost-4-ene-3,17-dione is converted into adrenosterone via corticosteroid 11-beta-dehydrogenase isozyme 1.
References
Androstenedione Metabolism References
Baravalle R, Di Nardo G, Bandino A, Barone I, Catalano S, Ando S, Gilardi G: Impact of R264C and R264H polymorphisms in human aromatase function. J Steroid Biochem Mol Biol. 2017 Mar;167:23-32. doi: 10.1016/j.jsbmb.2016.09.022. Epub 2016 Oct 1.
Pubmed: 27702664
Engeli RT, Rhouma BB, Sager CP, Tsachaki M, Birk J, Fakhfakh F, Keskes L, Belguith N, Odermatt A: Biochemical analyses and molecular modeling explain the functional loss of 17beta-hydroxysteroid dehydrogenase 3 mutant G133R in three Tunisian patients with 46, XY Disorders of Sex Development. J Steroid Biochem Mol Biol. 2016 Jan;155(Pt A):147-54. doi: 10.1016/j.jsbmb.2015.10.023. Epub 2015 Nov 3.
Pubmed: 26545797
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from PW031290
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings