Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Kidney Function - Ascending Limb of The Loop of Henle
Homo sapiens
Physiological Pathway
The loop of Henle of the nephron can be separated into an ascending limb and the descending limb. The descending limb is highly impermeable to solutes such as sodium, but permeable to water. Conversely, the ascending limb is highly impermeable to water, but permeable to solutes. Chloride, potassium, and sodium are co-transported across the apical membrane (closest to the lumen) via transporters from the filtrate. The transporter requires all three ions present to be effective and to maintain electroneutrality. In addition, the three ions are transported across the basolateral membrane (closest to the renal interstitium) via other means such as the sodium potassium ATPase transports and the chloride channels in the membrane. As these solutes are being actively transported out of the ascending limb and into the renal interstitium/capillary network without water following (due to the lack of water permeability), the filtrate becomes more diluted. Furthermore, these ions simultaneously causes an increase in osmotic pressure that contributes to water reabsorption in the descending limb. This effect can be magnified with the help of vasopressin, which is a hormone that is typically involved with water reabsorption. However, when it acts on the ascending limb, it aids in increasing sodium reabsorption which will increase water reabsorption in the latter parts of the nephron (the distal tubule and collecting duct).
References
Kidney Function - Ascending Limb of The Loop of Henle References
Mount DB: Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol. 2014 Nov 7;9(11):1974-86. doi: 10.2215/CJN.04480413. Epub 2014 Oct 15.
Pubmed: 25318757
Knepper MA, Kim GH, Fernandez-Llama P, Ecelbarger CA: Regulation of thick ascending limb transport by vasopressin. J Am Soc Nephrol. 1999 Mar;10(3):628-34.
Pubmed: 10073614
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM: Classical Renin-Angiotensin system in kidney physiology. Compr Physiol. 2014 Jul;4(3):1201-28. doi: 10.1002/cphy.c130040.
Pubmed: 24944035
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings