Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
2-Amino-3-Carboxymuconate Semialdehyde Degradation
Homo sapiens
Metabolic Pathway
This pathway is part of a major route of the degradation of L-tryptophan. It begins with 2-amino-3-carboxymuconate-6-semialdehyde which is generated from L-tryptophan degradation. The 2-amino-3-carboxymuconate-6-semialdehyde first is acted upon by a decarboxylase, forming 2-aminomuconic acid semialdehyde, which is then dehydrogenated by 2-aminomuconic semialdehyde dehydrogenase to form 2-aminomuconic acid. An unknown protein forms a 2-aminomuconate deaminase which forms (3E)-2-oxohex-3-enedioate, and a second unknown protein forms a 2-aminomuconate reductase, which forms oxoadipic acid from (3E)-2-oxohex-3-enedioate. Finally, within the mitochondria, oxoadipic acid is dehydrogenated and a coenzyme A is attached by the organelle’s oxoglutarate dehydrogenase complex, forming glutaryl-CoA. Glutaryl-CoA can then be further degraded.
References
2-Amino-3-Carboxymuconate Semialdehyde Degradation References
Colabroy KL, Begley TP: Tryptophan catabolism: identification and characterization of a new degradative pathway. J Bacteriol. 2005 Nov;187(22):7866-9. doi: 10.1128/JB.187.22.7866-7869.2005.
Pubmed: 16267312
Danhauser K, Sauer SW, Haack TB, Wieland T, Staufner C, Graf E, Zschocke J, Strom TM, Traub T, Okun JG, Meitinger T, Hoffmann GF, Prokisch H, Kolker S: DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet. 2012 Dec 7;91(6):1082-7. doi: 10.1016/j.ajhg.2012.10.006. Epub 2012 Nov 8.
Pubmed: 23141293
Fukuoka S, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K: Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis". J Biol Chem. 2002 Sep 20;277(38):35162-7. doi: 10.1074/jbc.M200819200. Epub 2002 Jul 24.
Pubmed: 12140278
ICHIYAMA A, NAKAMURA S, KAWAI H, HONJO T, NISHIZUKA Y, HAYAISHI O, SENOH S: STUDIES ON THE METABOLISM OF THE BENZENE RING OF TRYPTOPHAN IN MAMMALIAN TISSUES. II. ENZYMIC FORMATION OF ALPHA-AMINOMUCONIC ACID FROM 3-HYDROXYANTHRANILIC ACID. J Biol Chem. 1965 Feb;240:740-9.
Pubmed: 14275130
Liu X, Dong Y, Li X, Ren Y, Li Y, Wang W, Wang L, Feng L: Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2. Microbiology. 2010 Feb;156(Pt 2):589-95. doi: 10.1099/mic.0.031880-0. Epub 2009 Nov 26.
Pubmed: 19942660
Muraki T, Taki M, Hasegawa Y, Iwaki H, Lau PC: Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl Environ Microbiol. 2003 Mar;69(3):1564-72.
Pubmed: 12620844
Pucci L, Perozzi S, Cimadamore F, Orsomando G, Raffaelli N: Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism. FEBS J. 2007 Feb;274(3):827-40. doi: 10.1111/j.1742-4658.2007.05635.x.
Pubmed: 17288562
He Z, Davis JK, Spain JC: Purification, characterization, and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes JS45. J Bacteriol. 1998 Sep;180(17):4591-5.
Pubmed: 9721300
He Z, Spain JC: A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45. J Bacteriol. 1998 May;180(9):2502-6.
Pubmed: 9573204
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings