Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Acenocoumarol Action
Homo sapiens
Drug Action Pathway
Acenocoumarol is a vitamin K antagonist derived from coumarin. It is also marketed as Sintrom. Acenocoumarol works as other vitamin K antagonists, by reducing the stores of reduced vitamin K, by inhibiting the vitamin K reductase complex, and preventing the recycling of the vitamin K within the cell. This in turn prevents coagulation factors VIII, IX, X as well as prothrombin, factor II, from activating, which in turn prevents fibrin clots from being formed and stabilized.
Acenocoumarol is administered orally, and within 2 days, it is absorbed in the intestine and enters the liver. There, it inhibits the vitamin K epoxide reductase complex, preventing vitamin K1 2,3-epoxide from being recycled into reduced vitamin K. This leads to less reduced vitamin K to be present in order to react with the precursors of coagulation factors II, VII, IX and X through the vitamin K dependent gamma-carboxylase, and prevents those coagulation factors from being produced.
Normally, coagulation factor IX is activated by factor XIa, which then, with the addition of coagulation factor VIII, forms the tenase complex that activates coagulation factor X. Activated coagulation factor Xa then joins with coagulation factor V to form the prothrombinase complex which forms thrombin from prothrombin. Thrombin is then necessary to convert fibrinogen to loose fibrin within the blood plasma, as well as converting coagulation factor XIII into its activated form. The fibrin then is able to polymerizes, and is stabilized into a water insoluble clot by coagulation factor XIIIa.
The presence of acenocoumaroll and the absence of reduced vitamin K prevents this coagulation cascade from occurring as much due to lack of substrates, and thus helps to prevent blood clotting.
References
Acenocoumarol Action References
Cesar JM, Garcia-Avello A, Navarro JL, Herraez MV: Aging and oral anticoagulant therapy using acenocoumarol. Blood Coagul Fibrinolysis. 2004 Oct;15(8):673-6.
Pubmed: 15613922
Lengyel M: [Warfarin or acenocoumarol is better in the anticoagulant treatment of chronic atrial fibrillation?]. Orv Hetil. 2004 Dec 26;145(52):2619-21.
Pubmed: 15724697
Ufer M: Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet. 2005;44(12):1227-46. doi: 10.2165/00003088-200544120-00003.
Pubmed: 16372822
Montes R, Ruiz de Gaona E, Martinez-Gonzalez MA, Alberca I, Hermida J: The c.-1639G > A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. Br J Haematol. 2006 Apr;133(2):183-7. doi: 10.1111/j.1365-2141.2006.06007.x.
Pubmed: 16611310
Girard P, Nony P, Erhardtsen E, Delair S, Ffrench P, Dechavanne M, Boissel JP: Population pharmacokinetics of recombinant factor VIIa in volunteers anticoagulated with acenocoumarol. Thromb Haemost. 1998 Jul;80(1):109-13.
Pubmed: 9684795
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings