Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Triterpenoid Biosynthesis
Arabidopsis thaliana
Metabolic Pathway
Triterpenoids have 30 carbons and six isoprene units. They are derived from (S)-2,3-epoxysqualene. They may contain rings or be acyclic, depending on the bonds formed by the loss of the diphosphate group.
First, the terpenoid backbone is synthesized, producing farnesyl pyrophosphate. Two molecules of farnesyl pyrophosphate then join together to form presqualene diphosphate, catalyzed by squalene synthase 1. Then, the same enzyme removes the pyrophosphate group and replaces it with a hydrogen ion, forming squalene. Squalene then undergoes oxidation of one of its bonds via squlene monooxygenase 1, to form (S)-2,3-epoxysqualene. This may then proceed to the steroid biosynthesis pathway or may react with an isomerase or lyase to form a chair-chair-chair-boat triterpenoid. Similarly, squalene may interact with an isomerase or lyase to form a chair-chair-chair-chair triterpenoid.
After the backbone is complete, (S)-2,3-epoxysqualene can interact with many enzymes in order to form the triterpenoids. It can interact with camelliol C synthase to form camelliol C, thalianol synthase to form thalianol, baruol synthase to form baruol, tirucalladienol synthase to form tirucalla-7,24-dien-3-beta-ol, amyrun synthase LUP2 to form lupeol, alpha- and beta-amyrin synthases to form alpha- and beta-amyrin respectively. It can also interact with lupan-3beta,20-diol synthase to add a water molecule to form lupan-3beta,20-diol, alpha- and beta-seco-amyrin synthases to form alpha- and beta-seco-amyrin respectively, marneral synthase to form marneral, and finally arabidiol synthase to add a water molecule and form arabidiol.
References
Triterpenoid Biosynthesis References
Crock J, Wildung M, Croteau R: Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12833-8. doi: 10.1073/pnas.94.24.12833.
Pubmed: 9371761
Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N: Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J. 2008 Jul;55(2):224-39. doi: 10.1111/j.1365-313X.2008.03496.x. Epub 2008 Mar 19.
Pubmed: 18363779
Bertea CM, Voster A, Verstappen FW, Maffei M, Beekwilder J, Bouwmeester HJ: Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch Biochem Biophys. 2006 Apr 15;448(1-2):3-12. doi: 10.1016/j.abb.2006.02.026. Epub 2006 Mar 15.
Pubmed: 16579958
de Kraker JW, Franssen MC, Joerink M, de Groot A, Bouwmeester HJ: Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome p450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. Plant Physiol. 2002 May;129(1):257-68. doi: 10.1104/pp.010957.
Pubmed: 12011356
Jaroszewski JW, Strom-Hansen T, Hansen SH, Thastrup O, Kofod H: On the botanical distribution of chiral forms of gossypol. Planta Med. 1992 Oct;58(5):454-8. doi: 10.1055/s-2006-961512.
Pubmed: 17226502
Steele CL, Crock J, Bohlmann J, Croteau R: Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem. 1998 Jan 23;273(4):2078-89.
Pubmed: 9442047
Fraga BM: Natural sesquiterpenoids. Nat Prod Rep. 2008 Dec;25(6):1180-209. doi: 10.1039/b806216c. Epub 2008 Oct 14.
Pubmed: 19030608
Field B, Fiston-Lavier AS, Kemen A, Geisler K, Quesneville H, Osbourn AE: Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16116-21. doi: 10.1073/pnas.1109273108. Epub 2011 Aug 29.
Pubmed: 21876149
Field B, Osbourn AE: Metabolic diversification--independent assembly of operon-like gene clusters in different plants. Science. 2008 Apr 25;320(5875):543-7. doi: 10.1126/science.1154990. Epub 2008 Mar 20.
Pubmed: 18356490
Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A: A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8233-8. doi: 10.1073/pnas.0401301101. Epub 2004 May 17.
Pubmed: 15148404
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings