Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Nuclear factor kappa-B (NF-κB) Pathway
Homo sapiens
Signaling Pathway
NF-kB protein dimmers as nuclear transcription factor, they need to migrate to the nucleus, combined with DNA to have function. In most types of the normal cells under resting state, NF-KB was inactive and retain in the cytoplasm. They binding to a specific inhibitors called IK-B protein, which could bind to the Rel homology domain (RHD) of NF-kB and interfere with its nuclear localization sequence (NLS) function. These inhibitor proteins, which include IkBa, IkBb and IkBg, contain 6–7 ankyrin repeats that mediate binding to the RHD. These repeats are also present in the C-terminal halves of the NF-kB2/p100 and NF-kB1/p105 precursors, which also function as IkBs and retain their partners, the Rel proteins, in the cytoplasm. In order to activate the NF-kB molecular, the cells first need to separate the NF-kB protein from their inhibitors. There are two major signaling pathways lead to the IK-B protein inhibitor dissociation from NF-kB dimmer and let the translocation of NF-kB dimers from the cytoplasm into the nucleus.
References
Nuclear factor kappa-B (NF-κB) Pathway References
NF-κB signaling in inflammation
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
No Proteins Present
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
No Proteins Present
Clear
Settings