Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Quinine Action Pathway
Homo sapiens
Drug Action Pathway
Quinine is an alkaloid used to treat uncomplicated Plasmodium falciparum malaria.
It is used parenterally to treat life-threatening infections caused by chloroquine-resistant Plasmodium falciparum malaria. The plasmodium falciparum invades the erythrocytes in blood. Quinine accumulates in the parasite’s food vacuole and inhibits the enzyme heme ligase. Heme ligase is involved in hemoglobin breakdown. Hemoglobin from the erythrocyte is broken down in the digestive vacuole of the parasite. Hemoglobin is first broken down into heme and globin. Globin is further broken down to amino acids which are used by the parasite for nutrition and protein synthesis. Therefore, hemoglobin breakdown is essential for the parasite survival. The heme from hemoglobin is toxic to the parasite and is further broken down by heme ligase to detoxify heme. By quinine inhibiting heme ligase, there is a build up of heme in the parasite vacuole which becomes toxic to the parasite, thereby killing it.
Quinine has a bitter taste, and oral compliance is often poor. It is irritant to the gastric mucosa and can cause nausea and vomiting. Cinchonism can occur with exceeded plasma concentration in which symptoms like nausea, dizziness, tinnitus, headache and blurring of vision are experienced. Excessive plasma levels may also cause hypotension, cardiac dysrhythmias and severe central nervous system (CNS) disturbances such as delirium and coma.
References
Quinine Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Jain A, Sisodia J: Quinidine
Pubmed: 31194350
Coronado LM, Nadovich CT, Spadafora C: Malarial hemozoin: from target to tool. Biochim Biophys Acta. 2014 Jun;1840(6):2032-41. doi: 10.1016/j.bbagen.2014.02.009. Epub 2014 Feb 17.
Pubmed: 24556123
Ritter, James (2020). Rang and Dale’s Pharmacology (9th ed). Antiprotozoal drugs. Retrieved from: https://www-clinicalkey-com.login.ezproxy.library.ualberta.ca/#!/browse/book/3-s2.0-C2016004202X
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings