Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Amitriptyline Norepinephrine Reuptake Inhibitor Action Pathway
Homo sapiens
Drug Action Pathway
Amitriptyline is a tricyclic antidepressant indicated in the treatment of depressive illness, either endogenous or psychotic, and to relieve depression associated anxiety. The non-FDA-approved indications are anxiety, post-traumatic stress disorder, insomnia, chronic pain (diabetic neuropathy, fibromyalgia), irritable bowel syndrome, interstitial cystitis (bladder pain syndrome), migraine prophylaxis, postherpetic neuralgia, and sialorrhea. The three-ring central structure, along with a side chain, is the basic structure of tricyclic antidepressants. The monoamine hypothesis in depression, one of the oldest hypotheses, postulates that deficiencies of serotonin (5-HT) and/or norepinephrine (NE) neurotransmission in the brain lead to depressive effects. Amitriptyline by blocking the reuptake of both serotonin and norepinephrine neurotransmitters.
In adrenergic neurons, norepinephrine is synthesized from tyrosine and stored in synaptic vesicles. Once an action potential arrives at the nerve terminal, calcium channels open, causing the influx of calcium in the cytosol. Calcium then triggers the release of neurotransmitters stored in synaptic vesicles via exocytosis. The norepinephrine is released into the synapse and acts on α1, β1 and β2receptors which contribute to mood improvements. The norepinephrine in the synapse is rapidly taken up by the norepinephrine reuptake transporter on the presynaptic neuron, and is recycled. Amitriptyline inhibits these reuptake transporters on adrenergic neurons, thereby increasing norepinephrine concentration in the synapse. This allows more stimulation of adrenergic needed to improve depressive moods.
The most commonly encountered side effects of amitriptyline include weight gain, gastrointestinal symptoms like constipation, xerostomia, dizziness, headache, and somnolence.
References
Amitriptyline Norepinephrine Reuptake Inhibitor Pathway References
Thour A, Marwaha R: Amitriptyline
Pubmed: 30725910
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Van Oekelen D, Luyten WH, Leysen JE: 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci. 2003 Apr 18;72(22):2429-49. doi: 10.1016/s0024-3205(03)00141-3.
Pubmed: 12650852
Vaishnavi SN, Nemeroff CB, Plott SJ, Rao SG, Kranzler J, Owens MJ: Milnacipran: a comparative analysis of human monoamine uptake and transporter binding affinity. Biol Psychiatry. 2004 Feb 1;55(3):320-2. doi: 10.1016/j.biopsych.2003.07.006.
Pubmed: 14744476
Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. doi: 10.1016/s0014-2999(97)01393-9.
Pubmed: 9537821
Bryson HM, Wilde MI: Amitriptyline. A review of its pharmacological properties and therapeutic use in chronic pain states. Drugs Aging. 1996 Jun;8(6):459-76. doi: 10.2165/00002512-199608060-00008.
Pubmed: 8736630
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings