Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Voriconazole Action Pathway
Homo sapiens
Drug Action Pathway
Voriconazole is a triazole antifungal agent used to treat invasive fungal infections, generally seen in patients who are immunocompromised. It has an increased affinity to 14-alpha sterol demethylase, and therefore makes it useful against fluconazole-resistant fungal infections. It is taken orally and used to treat esophageal candidiasis, cadidemia, invasive pulmonary aspergillosis, and serious fungal infections caused by Scedosporium apiospermum and Fusarium spp. Voriconazole is effective against all Candida species (including those resistant to other antifungal drugs), Cryptococcus neoformans, Trichosporon beigelii, and Saccharomyces cerevisiae.
Voriconazole inhibits and antagonizes the production of ergosterol by inhibiting Lanosterol 14-alpha demethylase. It has a higher affinity for Lanosterol 14-alpha demethylase than other antifungal agents. Lanosterol 14-alpha demethylase is the enzyme that catalyzes the synthesis of 4,4'-dimethyl cholesta-8,14,24-triene-3-beta-ol from lanosterol. With this enzyme inhibited ergosterol synthesis cannot occur which causes a significant low concentration of ergosterol in the fungal cell. Ergosterol is essential in maintaining membrane integrity in fungi. Without ergosterol, the fungus cell cannot synthesize membranes thereby increasing fluidity and preventing growth of new cells. With fungal growth limited, it allows the immune system to destroy the fungal cells.
References
Voriconazole Pathway References
Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Sylvester R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B: Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002 Aug 8;347(6):408-15.
Patterson TF, Boucher HW, Herbrecht R, Denning DW, Lortholary O, Ribaud P, Rubin RH, Wingard JR, DePauw B, Schlamm HT, Troke P, Bennett JE: Strategy of following voriconazole versus amphotericin B therapy with other licensed antifungal therapy for primary treatment of invasive aspergillosis: impact of other therapies on outcome. Clin Infect Dis. 2005 Nov 15;41(10):1448-52. Epub 2005 Oct 13.
Johnson LB, Kauffman CA: Voriconazole: a new triazole antifungal agent. Clin Infect Dis. 2003 Mar 1;36(5):630-7. doi: 10.1086/367933. Epub 2003 Feb 10.
Pubmed: 12594645
Bellmann R, Smuszkiewicz P: Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017 Dec;45(6):737-779. doi: 10.1007/s15010-017-1042-z. Epub 2017 Jul 12.
Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G: Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother. 2005 Feb;49(2):668-79.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings