Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Tyrosine Hydroxylase Deficiency
Homo sapiens
Disease Pathway
Tyrosine Hydroxylase (TH) Deficiency is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of catecholamines pathways. The disorder is caused by defects in the Tyrosine hydroxylase (TH) gene which encodes for the enzyme tyrosine hydroxylase. This enzyme is part of the production of catecholamines such as dopamine, norepinephrine and epinephrine are all essential for normal nervous system function. Dopamine transmits signals to help the brain control physical movement and emotional behavior. Norepinephrine and epinephrine are involved in the autonomic nervous system. Mutations in the TH gene result in reduced activity of the tyrosine hydroxylase enzyme. As a result, the body produces less dopamine, norepinephrine and epinephrine. Symptoms of the disorder include abnormal movements, autonomic dysfunction, and other neurological problems. Treatments can include the administration of levodopa; however patient responses can vary greatly. The frequency of Tyrosine Hydroxylase Deficiency is unknown.
References
Tyrosine Hydroxylase Deficiency References
Furukawa Y, Kish SJ, Fahn S: Dopa-responsive dystonia due to mild tyrosine hydroxylase deficiency. Ann Neurol. 2004 Jan;55(1):147-8. doi: 10.1002/ana.10820.
Pubmed: 14705130
Verbeek MM, Steenbergen-Spanjers GC, Willemsen MA, Hol FA, Smeitink J, Seeger J, Grattan-Smith P, Ryan MM, Hoffmann GF, Donati MA, Blau N, Wevers RA: Mutations in the cyclic adenosine monophosphate response element of the tyrosine hydroxylase gene. Ann Neurol. 2007 Oct;62(4):422-6. doi: 10.1002/ana.21199.
Pubmed: 17696123
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Starke K: History of catecholamine research. Chem Immunol Allergy. 2014;100:288-301. doi: 10.1159/000359962. Epub 2014 May 23.
Pubmed: 24925409
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings