Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ribose-5-phosphate Isomerase Deficiency
Homo sapiens
Disease Pathway
Ribose-5-phosphate isomerase (RPI) deficiency, is a genetic disorder caused by mutations in the RPIA gene that codes for RPI. RPI is an enzyme that is involved in the pentose phosphate pathway as part of carbohydrate degradation. It reversibly converts D-ribulose 5-phosphate into D-ribose 5-phosphate. In the case of this disorder, RPI functions partially in tissues, because if the gene was simply non-functional, it would likely be lethal. This means that a specific type of mutation needs to occur for this disorder to occur, leading to it being the rarest disease in the world, with only three confirmed cases. In the first known case, the patient had one allele containing a frameshift mutation, which led to a truncated protein, while the other allele contained a missense mutation. This combination meant that activity of RPI was found to vary across tissues and cell types. Characteristics of the RPI deficiency include higher ribitol and arabitol levels in a metabolic profile, as well as differences in polyol profiles. There are other symptoms, including leukoencephalopathy and neuropathy, which may be caused by a toxic accumulation of ribitol and arabitol, or a potential lack of ribose-5-phosphate in RNA synthesis.
References
Ribose-5-phosphate Isomerase Deficiency References
Huck JH, Verhoeven NM, Struys EA, Salomons GS, Jakobs C, van der Knaap MS: Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet. 2004 Apr;74(4):745-51. doi: 10.1086/383204. Epub 2004 Feb 25.
Pubmed: 14988808
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Patra KC, Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014 Aug;39(8):347-54. doi: 10.1016/j.tibs.2014.06.005. Epub 2014 Jul 15.
Pubmed: 25037503
Wishart DS, Tian S, Allen D, Oler E, Peters H, Lui VW, Gautam V, Djoumbou Feunang Y, Greiner R, Metz TO; BioTransformer 3.0 – A Web Server for Accurately Predicting Metabolic Transformation Products [Submitted in Nucleic Acids Research, Webserver Issue.Apr.2022]
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings