Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Trifluridine Action Pathway
Homo sapiens
Drug Action Pathway
Trifluridine is a fluorinated pyrimidine nucleoside that is structurally related to idoxuridine and an active antiviral agent in ophthalmic solutions that is mainly used in the treatment of primary keratoxonjunctivitis and recurrent epithelial keratitis due to herpes simplex virus. It displays effective antiviral activity against Herpes simplex virus type 1 and 2.
The mechanism of action of trifluridine as an antiviral agent has not been fully elucidated, but appears to involve the inhibition of viral replication. Trifluridine gets incorporated into viral DNA during replication in replacement of thymidine, which leads to the formation of defective proteins and an increased mutation rate. Less Viral DNA is transported into the nucleus, therefore, less viral DNA is integrated into the host DNA. Less viral proteins produced, fewer viruses can form.
Trifluridine also mediates antineoplastic activities via this mechanism; following uptake into cancer cells, trifluridine is rapidly phosphorylated by thymidine kinase to its active monophosphate form. It is further phosphorylated into trifluridine triphosphate, which is readily incorporated into the DNA of tumour cells in place of thymidine bases to perturb DNA function, DNA synthesis, and tumour cell proliferation.
References
Trifluridine Pathway References
Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS: Trifluridine: a review of its antiviral activity and therapeutic use in the topical treatment of viral eye infections. Drugs. 1982 May;23(5):329-53. doi: 10.2165/00003495-198223050-00001.
Pubmed: 6284470
Burness CB, Duggan ST: Trifluridine/Tipiracil: A Review in Metastatic Colorectal Cancer. Drugs. 2016 Sep;76(14):1393-402. doi: 10.1007/s40265-016-0633-9.
Pubmed: 27568360
Matsuoka K, Nakagawa F, Kobunai T, Takechi T: Trifluridine/tipiracil overcomes the resistance of human gastric 5-fluorouracil-refractory cells with high thymidylate synthase expression. Oncotarget. 2018 Feb 5;9(17):13438-13450. doi: 10.18632/oncotarget.24412. eCollection 2018 Mar 2.
Pubmed: 29568368
Pavan-Langston D, Nelson DJ: Intraocular penetration of trifluridine. Am J Ophthalmol. 1979 Jun;87(6):814-8. doi: 10.1016/0002-9394(79)90360-x.
Pubmed: 110152
https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/207981s008lbl.pdf
Bijnsdorp IV, Kruyt FA, Fukushima M, Smid K, Gokoel S, Peters GJ: Molecular mechanism underlying the synergistic interaction between trifluorothymidine and the epidermal growth factor receptor inhibitor erlotinib in human colorectal cancer cell lines. Cancer Sci. 2010 Feb;101(2):440-7. doi: 10.1111/j.1349-7006.2009.01375.x. Epub 2009 Sep 29.
Pubmed: 19886911
Bijnsdorp IV, Peters GJ, Temmink OH, Fukushima M, Kruyt FA: Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells. Int J Cancer. 2010 May 15;126(10):2457-68. doi: 10.1002/ijc.24943.
Pubmed: 19816940
Bijnsdorp IV, Kruyt FA, Fukushima M, Peters GJ: Trifluorothymidine induces cell death independently of p53. Nucleosides Nucleotides Nucleic Acids. 2008 Jun;27(6):699-703. doi: 10.1080/15257770802145017.
Pubmed: 18600528
Madeira VM, Antunes-Madeira MC: Chemical composition of sarcolemma isolated from rabbit skeletal muscle. Biochim Biophys Acta. 1973 Mar 16;298(2):230-8. doi: 10.1016/0005-2736(73)90353-2.
Pubmed: 4719131
Temmink OH, Hoogeland MF, Fukushima M, Peters GJ: Low folate conditions may enhance the interaction of trifluorothymidine with antifolates in colon cancer cells. Cancer Chemother Pharmacol. 2006 Jan;57(2):171-9. doi: 10.1007/s00280-005-0033-4. Epub 2005 Jul 12.
Pubmed: 16010590
Oberg B, Johansson NG: The relative merits and drawbacks of new nucleoside analogues with clinical potential. J Antimicrob Chemother. 1984 Aug;14 Suppl A:5-26. doi: 10.1093/jac/14.suppl_a.5.
Pubmed: 6436227
Emura T, Nakagawa F, Fujioka A, Ohshimo H, Kitazato K: Thymidine kinase and thymidine phosphorylase level as the main predictive parameter for sensitivity to TAS-102 in a mouse model. Oncol Rep. 2004 Feb;11(2):381-7.
Pubmed: 14719072
Overman MJ, Kopetz S, Varadhachary G, Fukushima M, Kuwata K, Mita A, Wolff RA, Hoff P, Xiong H, Abbruzzese JL: Phase I clinical study of three times a day oral administration of TAS-102 in patients with solid tumors. Cancer Invest. 2008 Oct;26(8):794-9. doi: 10.1080/07357900802087242.
Pubmed: 18798063
Hong DS, Abbruzzese JL, Bogaard K, Lassere Y, Fukushima M, Mita A, Kuwata K, Hoff PM: Phase I study to determine the safety and pharmacokinetics of oral administration of TAS-102 in patients with solid tumors. Cancer. 2006 Sep 15;107(6):1383-90. doi: 10.1002/cncr.22125.
Pubmed: 16902987
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings