Loader
Loading Pathway...
N-type calcium channel potassium voltage-gated channel subfamily J Adenylate cyclase type 2 GABAA receptor Gamma- aminobutyric acid type B receptor Mu-type opioid receptor γ-Aminobutyric acid Dihydromorphine cAMP Ca+ Ca+ Na+ Na+ γ-Aminobutyric acid Dihydromorphine Dihydromorphine ATP PPi GTP Pain Guanine nucleotide- binding protein G(i) subunit alpha-1 Magnesium Less GABA leads to disinhibition of dopamine cell firing in the spinal chord pain transmission neurons. This leads to less pain signalling and analgesia Decreased calcium levels lead to decreased neurotransmitter release. Less GABA is released for synaptic vesicles. Dihydromorphine binds to pre synaptic mu opioid type receptors. The Gi subunit of the mu opioid receptor activates the inwardly rectifying potassium channel increasing K+ conductance. This causes membrane hyperpolarization decreasing the chances of neuronal firing/action potential. Post-Synaptic Neuron Pre-Synaptic Neuron Synapse Cytosol Synaptic Vesicle The mu opioid receptor through the gamma subunit inhibits voltage gated N-type calcium channels stopping the influx of calcium into the neuron. Blood-Brain Barrier Diffusion
CACNB1 KCNJ9 ADCY2 GABRG2 GABBR1 OPRM1 GNB1 GNG2 γ-Aminobutyric acid Dihydromorphine cAMP Calcium Calcium Sodium Sodium γ-Aminobutyric acid Dihydromorphine Dihydromorphine Adenosine triphosphate Pyrophosphate Guanosine triphosphate Pain GNAI1
CACNB1 KCNJ9 ADCY2 GABRG2 GABBR1 OPRM1 GNB1 GNG2 GABA Dimorph cAMP Ca+ Ca+ Na+ Na+ GABA Dimorph Dimorph ATP PPi GTP Pain GNAI1 Mg2+ Less GABA leads to disinhibition of dopamine cell firing in the spinal chord pain transmission neurons. This leads to less pain signalling and analgesia Decreased calcium levels lead to decreased neurotransmitter release. Less GABA is released for synaptic vesicles. Dihydromorphine binds to pre synaptic mu opioid type receptors. The Gi subunit of the mu opioid receptor activates the inwardly rectifying potassium channel increasing K+ conductance. This causes membrane hyperpolarization decreasing the chances of neuronal firing/action potential. Post-Synaptic Neuron Pre-Synaptic Neuron Synapse Cytosol Synaptic Vesicle The mu opioid receptor through the gamma subunit inhibits voltage gated N-type calcium channels stopping the influx of calcium into the neuron. Blood-Brain Barrier Diffusion
CACNB1 KCNJ9 ADCY2 GABRG2 GABBR1 OPRM1 GNB1 GNG2 GABA Dimorph cAMP Ca2+ Ca2+ Na+ Na+ GABA Dimorph Dimorph ATP Ppi GTP Pain GNAI1