Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Tranylcypromine Amine Oxidase Serotonin Antidepressant Action Pathway
Homo sapiens
Drug Action Pathway
Tranylcypromine is a non-hydrazine monoamine oxidase inhibitor belonging to the class of antidepressants called MAOIs. This drug is indicated in the treatment of major depression, dysthymic disorder, and atypical depression. It also is useful in panic and phobic disorders. The monoamine oxidase is an enzyme that catalyzes the oxidative deamination of many amines like serotonin, norepinephrine, epinephrine, and dopamine. There are 2 isoforms of this protein: A and B. The first one is found in cells located in the periphery and breakdown serotonin, norepinephrine, epinephrine, dopamine, and tyramine. The second one, the B isoform, breakdowns phenylethylamine, norepinephrine, epinephrine, dopamine, and tyramine. This isoform is found in the extracellular tissues and mostly in the brain. The mechanism of action of the MAOIs is still not determined, it is thought that they act by increasing free serotonin and norepinephrine concentrations and/or by altering the concentrations of other amines in the CNS. MAO A inhibition is thought to be more relevant to antidepressant activity than the inhibition caused by MAO B. Selective MAO B inhibitors have no antidepressant effects. An overdose of this drug will result in insomnia, restlessness, and anxiety. Hypotension, dizziness, weakness, and drowsiness may occur, progressing in severe cases to extreme dizziness and shock. This drug is administered as an oral tablet.
References
Tranylcypromine Amine Oxidase Serotonin Antidepressant Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Nolen WA: [Classical monoamine oxidase inhibitor: not registered for, but still a place in the treatment of depression]. Ned Tijdschr Geneeskd. 2003 Oct 4;147(40):1940-3.
Pubmed: 14574774
Frieling H, Bleich S: Tranylcypromine: new perspectives on an "old" drug. Eur Arch Psychiatry Clin Neurosci. 2006 Aug;256(5):268-73. doi: 10.1007/s00406-006-0660-8.
Pubmed: 16927039
Volz HP, Gleiter CH: Monoamine oxidase inhibitors. A perspective on their use in the elderly. Drugs Aging. 1998 Nov;13(5):341-55. doi: 10.2165/00002512-199813050-00002.
Pubmed: 9829163
Shioda K, Nisijima K, Yoshino T, Kato S: Extracellular serotonin, dopamine and glutamate levels are elevated in the hypothalamus in a serotonin syndrome animal model induced by tranylcypromine and fluoxetine. Prog Neuropsychopharmacol Biol Psychiatry. 2004 Jul;28(4):633-40. doi: 10.1016/j.pnpbp.2004.01.013.
Pubmed: 15276688
Loscher W, Lehmann H, Teschendorf HJ, Traut M, Gross G: Inhibition of monoamine oxidase type A, but not type B, is an effective means of inducing anticonvulsant activity in the kindling model of epilepsy. J Pharmacol Exp Ther. 1999 Mar;288(3):984-92.
Pubmed: 10027835
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings