Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Dihydroergotamine Mechanism of Action Action Pathway
Homo sapiens
Drug Action Pathway
Dihydroergotamine (DHE) is an ergot alkaloid used in the acute treatment of migraine headache and cluster headache. Dihydroergotamine is used as an abortive therapy for migraines with or without aura. Its use has largely been supplanted by triptans in current therapy due to the class's greater selectivity and more favourable side effect profile. DHE has several proposed mechanisms which may contribute to its therapeutic efficacy as an abortive therapy in migraines. Firstly, DHE's s agonist action on 5-hydroxytryptamine (5HT) 1b receptors in the smooth muscle of the cranial vasculature may provide relief via vasoconstriction of the blood vessels which typically become dilated due to the release of CGRP during migraine attacks. DHE's off-target action at alpha-adrenergic receptors may further contribute via this mechanism. The remaining mechanisms are thought to provide relief through the effects on the neurogenic causes of migraine symptoms. Agonist action by DHE on 5-HT1b and 5-HT1d receptors inhibits nociceptive signalling through the ventroposteromedial thalamus to the trigeminal sensory neurons. Further action on 5-HT1b and 5-HT1d receptors with the addition of agonist activity on 5-HT1f in the trigeminal nucleus caudalis decreases afferent signalling to trigeminal sensory neurons which contributes to central sensitization. The success of experimental compounds selectively targetting the 5-HT1f receptor lends support to this mechanism. Lastly, action at 5-HT1d receptors on trigeminal nerve terminals inhibits the release of vasoactive neuropeptides thought to contribute to pain and inflammation during a migraine attack. DHE is known to have 10-fold less potency at the 5-HT1b receptor than its predecessor ergotamine which reduces the incidence of vascular side effects. Notably, DHE slowly diffuses from receptors resulting in unreliable prediction of effects from plasma concentration.
References
Dihydroergotamine Mechanism of Action pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Nicolas S, Nicolas D: Triptans.
Pubmed: 32119394
Lew C, Punnapuzha S: Migraine Medications.
Pubmed: 31985952
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings