PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW000542 |
disease
17-alpha-Hydroxylase Deficiency (CYP17)Homo sapiens
17-alpha-hydroxylase deficiency, also known as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency or congenital adrenal hyperplasia type 5, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by a mutation in the CYP17A1 gene which encodes the enzyme steroid 17-alpha-hydroxylase. This enzyme hydroxylates both progesterone and pregnenolone into 17-hydroxyprogesterone and 17a-hydroxypregnenolone respectively in the mitochondria, as well as hydroxylating 21-deoxycortisol to 11b-hydroxyprogesterone within the endoplasmic reticulum. When mutated, it leads to an accumulation of pregnenolone, progesterone, deoxycorticosterone and 11-dehydrocorticosterone throughout the cell. 17-alpha hydroxylase deficiency is characterized by a deficiency of sex steroids, as well as glucocorticoids. Symptoms include male undervirilization, as well as lack of development during puberty including amenorrhea for females. Low levels of potassium in the blood due to the increased levels of mineralocorticoids can occur, as well as hypertension. Treatment with dexamethasone has been able to normalize blood pressure and blood potassium levels. It is estimated that 17-alpha-hydroxylase deficiency affects 1 in 1,000,000 individuals.
|
Creator: WishartLab Created On: August 29, 2013 at 10:39 Last Updated: August 29, 2013 at 10:39 |
PW121886 |
disease
17-alpha-Hydroxylase Deficiency (CYP17)Mus musculus
17-alpha-hydroxylase deficiency, also known as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency or congenital adrenal hyperplasia type 5, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by a mutation in the CYP17A1 gene which encodes the enzyme steroid 17-alpha-hydroxylase. This enzyme hydroxylates both progesterone and pregnenolone into 17-hydroxyprogesterone and 17a-hydroxypregnenolone respectively in the mitochondria, as well as hydroxylating 21-deoxycortisol to 11b-hydroxyprogesterone within the endoplasmic reticulum. When mutated, it leads to an accumulation of pregnenolone, progesterone, deoxycorticosterone and 11-dehydrocorticosterone throughout the cell. 17-alpha hydroxylase deficiency is characterized by a deficiency of sex steroids, as well as glucocorticoids. Symptoms include male undervirilization, as well as lack of development during puberty including amenorrhea for females. Low levels of potassium in the blood due to the increased levels of mineralocorticoids can occur, as well as hypertension. Treatment with dexamethasone has been able to normalize blood pressure and blood potassium levels. It is estimated that 17-alpha-hydroxylase deficiency affects 1 in 1,000,000 individuals.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:50 Last Updated: September 10, 2018 at 15:50 |
PW122110 |
disease
17-alpha-Hydroxylase Deficiency (CYP17)Rattus norvegicus
17-alpha-hydroxylase deficiency, also known as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency or congenital adrenal hyperplasia type 5, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by a mutation in the CYP17A1 gene which encodes the enzyme steroid 17-alpha-hydroxylase. This enzyme hydroxylates both progesterone and pregnenolone into 17-hydroxyprogesterone and 17a-hydroxypregnenolone respectively in the mitochondria, as well as hydroxylating 21-deoxycortisol to 11b-hydroxyprogesterone within the endoplasmic reticulum. When mutated, it leads to an accumulation of pregnenolone, progesterone, deoxycorticosterone and 11-dehydrocorticosterone throughout the cell. 17-alpha hydroxylase deficiency is characterized by a deficiency of sex steroids, as well as glucocorticoids. Symptoms include male undervirilization, as well as lack of development during puberty including amenorrhea for females. Low levels of potassium in the blood due to the increased levels of mineralocorticoids can occur, as well as hypertension. Treatment with dexamethasone has been able to normalize blood pressure and blood potassium levels. It is estimated that 17-alpha-hydroxylase deficiency affects 1 in 1,000,000 individuals.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:52 Last Updated: September 10, 2018 at 15:52 |
PW000059 |
disease
17-beta Hydroxysteroid Dehydrogenase III DeficiencyHomo sapiens
17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.
|
Creator: WishartLab Created On: August 01, 2013 at 15:52 Last Updated: August 01, 2013 at 15:52 |
PW121688 |
disease
17-beta Hydroxysteroid Dehydrogenase III DeficiencyMus musculus
17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:49 Last Updated: September 10, 2018 at 15:49 |
PW121914 |
disease
17-beta Hydroxysteroid Dehydrogenase III DeficiencyRattus norvegicus
17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:50 Last Updated: September 10, 2018 at 15:50 |
PW064417 |
2,3-ButanediolEscherichia coli (strain K12)
Metabolic pathway for 2,3-Butanediol synthesis in E. coli AV12 by expresing an sinthetic operon.
|
Creator: Guest: Anonymous Created On: October 29, 2017 at 01:54 Last Updated: October 29, 2017 at 01:54 |
PW064418 |
2,3-Butanediol (2,3-BDO)Escherichia coli (strain K12)
|
Creator: Guest: Anonymous Created On: October 29, 2017 at 02:48 Last Updated: October 29, 2017 at 02:48 |
PW000751 |
2,3-Dihydroxybenzoate BiosynthesisEscherichia coli
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: miguel ramirez Created On: January 13, 2015 at 15:49 Last Updated: January 13, 2015 at 15:49 |
PW122554 |
2,3-Dihydroxybenzoate BiosynthesisPseudomonas aeruginosa
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Ana Marcu Created On: August 12, 2019 at 16:57 Last Updated: August 12, 2019 at 16:57 |