
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW685547 |
Propanoate MetabolismYersinia frederiksenii ATCC 33641
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 21, 2025 at 14:27 Last Updated: January 21, 2025 at 14:27 |
PW685511 |
Propanoate MetabolismEikenella corrodens ATCC 23834
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 20, 2025 at 23:59 Last Updated: January 20, 2025 at 23:59 |
PW474325 |
Propanoate MetabolismBacteroides massiliensis
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 24, 2025 at 08:15 Last Updated: January 24, 2025 at 08:15 |
PW463284 |
Propanoate MetabolismParaprevotella clara YIT 11840
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 20, 2025 at 08:24 Last Updated: January 20, 2025 at 08:24 |
PW685554 |
Propanoate MetabolismHaemophilus haemolyticus M19501
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 21, 2025 at 15:17 Last Updated: January 21, 2025 at 15:17 |
PW685466 |
Propanoate MetabolismBacteroides fluxus YIT 12057
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 20, 2025 at 01:21 Last Updated: January 20, 2025 at 01:21 |
PW460374 |
Propanoate MetabolismParabacteroides goldsteinii dnLKV18
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 18, 2025 at 22:13 Last Updated: January 18, 2025 at 22:13 |
PW462824 |
Propanoate MetabolismBacteroides cellulosilyticus DSM 14838
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 19, 2025 at 23:39 Last Updated: January 19, 2025 at 23:39 |
PW459461 |
Propanoate MetabolismEscherichia coli (strain MS 21-1)
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 18, 2025 at 12:57 Last Updated: January 18, 2025 at 12:57 |
PW462178 |
Propanoate MetabolismSalmonella paratyphi B (strain ATCC BAA-1250 / SPB7)
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
|
Creator: Julia Wakoli Created On: January 19, 2025 at 16:13 Last Updated: January 19, 2025 at 16:13 |