Loader

Pathways

PathWhiz ID Pathway Meta Data

PW486634

Pw486634 View Pathway
metabolic

PreQ0 Metabolism

Paenibacillus lactis 154
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW486906

Pw486906 View Pathway
metabolic

PreQ0 Metabolism

Subdoligranulum variabile DSM 15176
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW500054

Pw500054 View Pathway
metabolic

PreQ0 Metabolism

Escherichia coli O113:H21
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW494480

Pw494480 View Pathway
metabolic

PreQ0 Metabolism

Escherichia coli O157:H7 str. Sakai
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW493970

Pw493970 View Pathway
metabolic

PreQ0 Metabolism

Bacteroides plebeius
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW494550

Pw494550 View Pathway
metabolic

PreQ0 Metabolism

Escherichia coli O127:H6 str. E2348/69
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW494620

Pw494620 View Pathway
metabolic

PreQ0 Metabolism

Escherichia coli O157:H7 str. TW14359
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW487303

Pw487303 View Pathway
metabolic

PreQ0 Metabolism

Methylibium sp. Pch-M
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW482827

Pw482827 View Pathway
metabolic

PreQ0 Metabolism

Porphyromonas uenonis 60-3
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine

PW484614

Pw484614 View Pathway
metabolic

PreQ0 Metabolism

Kingella oralis ATCC 51147
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP. GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine. The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine