Loader

Pathways

PathWhiz ID Pathway Meta Data

PW686196

Pw686196 View Pathway
metabolic

Polymyxin Resistance

Tatumella ptyseos ATCC 33301
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW499154

Pw499154 View Pathway
metabolic

Polymyxin Resistance

Bacteroides sp. 2_1_22
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW500735

Pw500735 View Pathway
metabolic

Polymyxin Resistance

Kingella oralis ATCC 51147
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW501430

Pw501430 View Pathway
metabolic

Polymyxin Resistance

Providencia rustigianii DSM 4541
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW498973

Pw498973 View Pathway
metabolic

Polymyxin Resistance

Bacteroides pyogenes DSM 20611 = JCM 6294
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW501034

Pw501034 View Pathway
metabolic

Polymyxin Resistance

Helicobacter winghamensis ATCC BAA-430
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW686090

Pw686090 View Pathway
metabolic

Polymyxin Resistance

Bacteroides eggerthii 1_2_48FAA
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW500139

Pw500139 View Pathway
metabolic

Polymyxin Resistance

Alistipes putredinis DSM 17216
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW686166

Pw686166 View Pathway
metabolic

Polymyxin Resistance

Desulfovibrio piger ATCC 29098
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW495809

Pw495809 View Pathway
metabolic

Polymyxin Resistance

Escherichia coli str. K-12 substr. MG1655
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A