
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW500189 |
Polymyxin ResistanceTannerella forsythia
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 05, 2025 at 01:09 Last Updated: February 05, 2025 at 01:09 |
PW686138 |
Polymyxin ResistancePrevotella intermedia ATCC 25611 = DSM 20706
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 04, 2025 at 22:35 Last Updated: February 04, 2025 at 22:35 |
PW495652 |
Polymyxin ResistanceEscherichia coli (strain UTI89 / UPEC)
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 03, 2025 at 13:08 Last Updated: February 03, 2025 at 13:08 |
PW686102 |
Polymyxin ResistanceBacteroides fluxus YIT 12057
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 04, 2025 at 16:03 Last Updated: February 04, 2025 at 16:03 |
PW527536 |
Polymyxin ResistanceEscherichia coli UMN026
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 18, 2025 at 05:38 Last Updated: February 18, 2025 at 05:38 |
PW527621 |
Polymyxin ResistanceEscherichia coli IAI1
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 18, 2025 at 06:07 Last Updated: February 18, 2025 at 06:07 |
PW527878 |
Polymyxin ResistanceEscherichia coli O103:H2 str. 12009
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 18, 2025 at 07:24 Last Updated: February 18, 2025 at 07:24 |
PW501237 |
Polymyxin ResistanceKluyvera ascorbata ATCC 33433
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 05, 2025 at 11:53 Last Updated: February 05, 2025 at 11:53 |
PW500981 |
Polymyxin ResistanceHelicobacter pullorum MIT 98-5489
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 05, 2025 at 09:20 Last Updated: February 05, 2025 at 09:20 |
PW495651 |
Polymyxin ResistanceEscherichia coli (strain 55989 / EAEC)
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
|
Creator: Julia Wakoli Created On: February 03, 2025 at 13:07 Last Updated: February 03, 2025 at 13:07 |