
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW371420 |
2,3-Dihydroxybenzoate BiosynthesisEscherichia coli IAI1
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 25, 2024 at 09:09 Last Updated: November 25, 2024 at 09:09 |
PW371413 |
2,3-Dihydroxybenzoate BiosynthesisEscherichia coli HS
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 25, 2024 at 09:07 Last Updated: November 25, 2024 at 09:07 |
PW370737 |
2,3-Dihydroxybenzoate BiosynthesisTrabulsiella guamensis ATCC 49490
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 05:59 Last Updated: November 24, 2024 at 05:59 |
PW370756 |
2,3-Dihydroxybenzoate BiosynthesisProvidencia rustigianii DSM 4541
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 06:23 Last Updated: November 24, 2024 at 06:23 |
PW370679 |
2,3-Dihydroxybenzoate BiosynthesisCampylobacter gracilis RM3268
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 04:50 Last Updated: November 24, 2024 at 04:50 |
PW370713 |
2,3-Dihydroxybenzoate BiosynthesisCitrobacter amalonaticus Y19
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 05:35 Last Updated: November 24, 2024 at 05:35 |
PW370642 |
2,3-Dihydroxybenzoate BiosynthesisLautropia mirabilis ATCC 51599
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 04:05 Last Updated: November 24, 2024 at 04:05 |
PW370692 |
2,3-Dihydroxybenzoate BiosynthesisHelicobacter bilis ATCC 43879
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 05:08 Last Updated: November 24, 2024 at 05:08 |
PW370743 |
2,3-Dihydroxybenzoate BiosynthesisEdwardsiella tarda ATCC 23685
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 06:05 Last Updated: November 24, 2024 at 06:05 |
PW370717 |
2,3-Dihydroxybenzoate BiosynthesisCitrobacter youngae ATCC 29220
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 05:38 Last Updated: November 24, 2024 at 05:38 |