PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW016414View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z))Homo sapiens
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: June 05, 2017 at 13:56 Last Updated: June 05, 2017 at 13:56 |
PW083608View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z))Bos taurus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: August 06, 2018 at 18:16 Last Updated: August 06, 2018 at 18:16 |
PW088850View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z))Rattus norvegicus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: August 11, 2018 at 01:27 Last Updated: August 11, 2018 at 01:27 |
PW072652View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z))Mus musculus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: August 02, 2018 at 11:57 Last Updated: August 02, 2018 at 11:57 |
PW072653View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))Mus musculus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: August 02, 2018 at 11:58 Last Updated: August 02, 2018 at 11:58 |
PW016415View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))Homo sapiens
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: June 05, 2017 at 13:57 Last Updated: June 05, 2017 at 13:57 |
PW088851View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))Rattus norvegicus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: August 11, 2018 at 01:28 Last Updated: August 11, 2018 at 01:28 |
PW083609View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))Bos taurus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: August 06, 2018 at 18:17 Last Updated: August 06, 2018 at 18:17 |
PW016416View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z))Homo sapiens
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: June 05, 2017 at 13:57 Last Updated: June 05, 2017 at 13:57 |
PW088852View Pathway |
Phosphatidylethanolamine Biosynthesis PE(20:3(8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z))Rattus norvegicus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.
|
Creator: Carin Li Created On: August 11, 2018 at 01:29 Last Updated: August 11, 2018 at 01:29 |