Loader

Pathways

PathWhiz ID Pathway Meta Data

PW147022

Pw147022 View Pathway
metabolic

4-Hydroxybutyric acid Drug Metabolism Pathway

Homo sapiens

PW251361

Pw251361 View Pathway
metabolic

4-Chlorobiphenyl degradation

Pseudoxanthomonas spadix
4-chlorobiphenyl, a PCB and environmental pollutant, is degraded by bacteria e.g., Pseudoxanthomonas spadix a source of carbon and energy. 4-Chlorobiphenyl degradation in Pseudoxanthomonas spadix begins with the oxidation of 4-chlorobiphenyl by biphenyl 2,3-dioxygenase small subunit (BphA2) to form an intermediate compound, cis-2,3-Dihydro-2,3-dihydroxy-4'-chlorobiphenyl. This intermediate is then dehydrogenated to 2,3-Dihydroxy-4'-chlorobiphenyl, by 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase. Subsequently, the compound is converted by 2,3-dihydroxybiphenyl-1,2-dioxygenase to form 2-Hydroxy-6-oxo-6-(4'-chlorophenyl)-hexa-2,4-dienoate, that is further degraded to produce compounds such as pyruvate and acetyl-COA which are essential for glycolysis and citrate cycle.

PW146983

Pw146983 View Pathway
metabolic

4-Aminohippuric acid Drug Metabolism Pathway

Homo sapiens

PW002068

Pw002068 View Pathway
metabolic

4-Aminobutanoate Degradation I

Escherichia coli
Putrescine is an organic chemical produced when amino acids are broken down in organsisms, both living and dead. It can be used as a carbon and nitrogen source in E. coli, and is broken down into gamma-aminobutyric acid (GABA). In this pathway, GABA from putrescine degradation reacts with oxoglutaric acid in a reversible reaction catalyzed by 4-aminobutyrate aminotransferase. This reaction forms succinic acid semialdehyde, as well as L-glutamic acid as a byproduct. Succinic acid semialdehyde is then converted to succinic acid in a reaction catalyzed by succinate-semialdehyde dehydrogenase, using NAD as a cofactor. Succinic acid can then be used by the bacteria in the TCA cycle.

PW123551

Pw123551 View Pathway
metabolic

4-Aminobutanoate Degradation I

Pseudomonas aeruginosa
Putrescine is an organic chemical produced when amino acids are broken down in organsisms, both living and dead. It can be used as a carbon and nitrogen source in E. coli, and is broken down into gamma-aminobutyric acid (GABA). In this pathway, GABA from putrescine degradation reacts with oxoglutaric acid in a reversible reaction catalyzed by 4-aminobutyrate aminotransferase. This reaction forms succinic acid semialdehyde, as well as L-glutamic acid as a byproduct. Succinic acid semialdehyde is then converted to succinic acid in a reaction catalyzed by succinate-semialdehyde dehydrogenase, using NAD as a cofactor. Succinic acid can then be used by the bacteria in the TCA cycle.

PW002382

Pw002382 View Pathway
metabolic

4-Aminobutanoate Degradation

Saccharomyces cerevisiae
GABA(γ-aminobutyric acid) is a non-protein amino acid that can be accumulated via permease-mediated uptake by Uga4p, Put4p, and Gap1p. GABA can also be produced via glutamate degradation by the glutamate decarboxylase, this variant of the pathway includes a 2-oxoglutarate-dependent 4-aminobutyrate transaminase and an NAD+-dependent dehydrogenase. This combination of enzymes has been documented in bacteria and animals and in some plants. Regarding the hydrogenase, NAD-specific variants have been studied from many bacteria, plant and animals.

PW175957

Pw175957 View Pathway
metabolic

4-(Isopropylamino)diphenylamine Predicted Metabolism Pathway new

Homo sapiens
Metabolites of 4-(Isopropylamino)diphenylamine are predicted with biotransformer.

PW146791

Pw146791 View Pathway
drug action

4-(Isopropylamino)diphenylamine Drug Metabolism Action Pathway

Homo sapiens

PW000698

Pw000698 View Pathway
disease

3-Phosphoglycerate Dehydrogenase Deficiency

Homo sapiens
3-Phosphoglycerate dehydrogenase deficiency is a disorder of L-serine biosynthesis that is characterized by congenital microcephaly, psychomotor retardation, and seizures.The disorder is caused by homozygous or compound heterozygous or homozygous mutation in the gene encoding phosphoglycerate dehydrogenase on chromosome 1p12. Defects in the gene lead to a decrease of Glycine and Serine.

PW121909

Pw121909 View Pathway
disease

3-Phosphoglycerate Dehydrogenase Deficiency

Mus musculus
3-Phosphoglycerate dehydrogenase deficiency is a disorder of L-serine biosynthesis that is characterized by congenital microcephaly, psychomotor retardation, and seizures.The disorder is caused by homozygous or compound heterozygous or homozygous mutation in the gene encoding phosphoglycerate dehydrogenase on chromosome 1p12. Defects in the gene lead to a decrease of Glycine and Serine.