Loader

Pathways

PathWhiz ID Pathway Meta Data

PW132278

Pw132278 View Pathway
metabolic

Undecoylium chloride iodine complex Drug Metabolism

Homo sapiens
Undecoylium chloride iodine complex is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Undecoylium chloride iodine complex passes through the liver and is then excreted from the body mainly through the kidney.

PW146123

Pw146123 View Pathway
drug action

Undecoylium chloride iodine complex Drug Metabolism Action Pathway

Homo sapiens

PW146241

Pw146241 View Pathway
drug action

Undecylenic acid Drug Metabolism Action Pathway

Homo sapiens

PW123869

Pw123869 View Pathway
metabolic

Unico ajajaj

Homo sapiens

PW145826

Pw145826 View Pathway
drug action

Unoprostone Drug Metabolism Action Pathway

Homo sapiens

PW132444

Pw132444 View Pathway
metabolic

Upadacitinib Drug Metabolism

Homo sapiens
Upadacitinib is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Upadacitinib passes through the liver and is then excreted from the body mainly through the kidney.

PW146906

Pw146906 View Pathway
drug action

Upadacitinib Drug Metabolism Action Pathway

Homo sapiens

PW123957

Pw123957 View Pathway
signaling

UPR

Mus musculus
UPR

PW002026

Pw002026 View Pathway
metabolic

Uracil Degradation III

Escherichia coli
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW123529

Pw123529 View Pathway
metabolic

Uracil Degradation III

Pseudomonas aeruginosa
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.