Loader

Pathways

PathWhiz ID Pathway Meta Data

PW121896

Pw121896 View Pathway
disease

21-Hydroxylase Deficiency (CYP21)

Mus musculus
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the steps of biosynthesis of cortisol from cholesterol in the adrenal glands, also known as steroidogenesis. 21-hydroxylase deficiency, also known as CYP21 deficiency or CAH1, is an autosomal recessive disorder that accounts for the vast majority of cases of CAH. This deficiency affects cells in the adrenal cortex of the adrenal glands, and due to the deficiency in an enzyme used in many pathways. This prevents the completion of several hormone biosynthesis pathways, including those producing aldosterone and cortisol, and leads to a buildup of their precursors, including 17a-hydroxypregnenolone, which are then processed by the pathways that produce androgen hormones including testosterone. This disorder can vary in severity, depending on the amount of functional enzyme present. The most severe form is known as the salt-wasting form of 21-hydroxylase, and is caused by a complete lack of functional enzyme. This form is called the salt-wasting form, as the lack of aldosterone produced leads to high levels of sodium excreted in the urine, causing infant blood volume to decrease. High potassium levels in blood are also often observed, but if properly diagnosed, saline solution and hydrocortisone can restore normal blood levels and sodium content. In addition, males are typically visually unaffected, but females often possess ambiguous genitalia due to the excess exposure to testosterone during development. The second most severe form is known as the simple virilising form, which does not involve the salt loss of the salt-wasting form, due to a partially functional 21-hydroxylase enzyme. However, the androgen hormones build up similarly, leading to females with some amount of virilisation, or some amount of male characteristics, including ambiguous genitalia. The third and least severe form, known as the non-classical or late onset form, has the highest function in 21-hydroxylase enzymes, and leads to the smallest buildup of androgen hormones. This means that females exhibit little to no virilisation at birth, but as they age can experience male-associated hair growth and baldness, as well as decreased fertility and menstruation irregularities. It can also lead to an early puberty in both males and females, though treatment can help prevent this if it is caught in time.

PW122120

Pw122120 View Pathway
disease

21-Hydroxylase Deficiency (CYP21)

Rattus norvegicus
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the steps of biosynthesis of cortisol from cholesterol in the adrenal glands, also known as steroidogenesis. 21-hydroxylase deficiency, also known as CYP21 deficiency or CAH1, is an autosomal recessive disorder that accounts for the vast majority of cases of CAH. This deficiency affects cells in the adrenal cortex of the adrenal glands, and due to the deficiency in an enzyme used in many pathways. This prevents the completion of several hormone biosynthesis pathways, including those producing aldosterone and cortisol, and leads to a buildup of their precursors, including 17a-hydroxypregnenolone, which are then processed by the pathways that produce androgen hormones including testosterone. This disorder can vary in severity, depending on the amount of functional enzyme present. The most severe form is known as the salt-wasting form of 21-hydroxylase, and is caused by a complete lack of functional enzyme. This form is called the salt-wasting form, as the lack of aldosterone produced leads to high levels of sodium excreted in the urine, causing infant blood volume to decrease. High potassium levels in blood are also often observed, but if properly diagnosed, saline solution and hydrocortisone can restore normal blood levels and sodium content. In addition, males are typically visually unaffected, but females often possess ambiguous genitalia due to the excess exposure to testosterone during development. The second most severe form is known as the simple virilising form, which does not involve the salt loss of the salt-wasting form, due to a partially functional 21-hydroxylase enzyme. However, the androgen hormones build up similarly, leading to females with some amount of virilisation, or some amount of male characteristics, including ambiguous genitalia. The third and least severe form, known as the non-classical or late onset form, has the highest function in 21-hydroxylase enzymes, and leads to the smallest buildup of androgen hormones. This means that females exhibit little to no virilisation at birth, but as they age can experience male-associated hair growth and baldness, as well as decreased fertility and menstruation irregularities. It can also lead to an early puberty in both males and females, though treatment can help prevent this if it is caught in time.

PW000552

Pw000552 View Pathway
disease

21-Hydroxylase Deficiency (CYP21)

Homo sapiens
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the steps of biosynthesis of cortisol from cholesterol in the adrenal glands, also known as steroidogenesis. 21-hydroxylase deficiency, also known as CYP21 deficiency or CAH1, is an autosomal recessive disorder that accounts for the vast majority of cases of CAH. This deficiency affects cells in the adrenal cortex of the adrenal glands, and due to the deficiency in an enzyme used in many pathways. This prevents the completion of several hormone biosynthesis pathways, including those producing aldosterone and cortisol, and leads to a buildup of their precursors, including 17a-hydroxypregnenolone, which are then processed by the pathways that produce androgen hormones including testosterone. This disorder can vary in severity, depending on the amount of functional enzyme present. The most severe form is known as the salt-wasting form of 21-hydroxylase, and is caused by a complete lack of functional enzyme. This form is called the salt-wasting form, as the lack of aldosterone produced leads to high levels of sodium excreted in the urine, causing infant blood volume to decrease. High potassium levels in blood are also often observed, but if properly diagnosed, saline solution and hydrocortisone can restore normal blood levels and sodium content. In addition, males are typically visually unaffected, but females often possess ambiguous genitalia due to the excess exposure to testosterone during development. The second most severe form is known as the simple virilising form, which does not involve the salt loss of the salt-wasting form, due to a partially functional 21-hydroxylase enzyme. However, the androgen hormones build up similarly, leading to females with some amount of virilisation, or some amount of male characteristics, including ambiguous genitalia. The third and least severe form, known as the non-classical or late onset form, has the highest function in 21-hydroxylase enzymes, and leads to the smallest buildup of androgen hormones. This means that females exhibit little to no virilisation at birth, but as they age can experience male-associated hair growth and baldness, as well as decreased fertility and menstruation irregularities. It can also lead to an early puberty in both males and females, though treatment can help prevent this if it is caught in time.

PW123532

Pw123532 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism 2

Pseudomonas aeruginosa
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a Cis-3-(3-carboxyethyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW002035

Pw002035 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism 2

Escherichia coli
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a Cis-3-(3-carboxyethyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW001890

Pw001890 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Escherichia coli
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW123410

Pw123410 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Pseudomonas aeruginosa
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW336701

Pw336701 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Parabacteroides johnsonii DSM 18315
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336698

Pw336698 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Alistipes indistinctus YIT 12060
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336744

Pw336744 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Parasutterella excrementihominis YIT 11859
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)