Loader

Pathways

PathWhiz ID Pathway Meta Data

PW088346

Pw088346 View Pathway
metabolic

Valine, Leucine, and Isoleucine Degradation

Rattus norvegicus
Valine, isoleuciine, and leucine are essential amino acids and are identified as the branched-chain amino acids (BCAAs). The catabolism of all three amino acids starts in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with α-ketoglutarate as the amine acceptor. As a result, three different α-keto acids are produced and are oxidized using a common branched-chain α-keto acid dehydrogenase (BCKD), yielding the three different CoA derivatives. Isovaleryl-CoA is produced from leucine by these two reactions, alpha-methylbutyryl-CoA from isoleucine, and isobutyryl-CoA from valine. These acyl-CoA’s undergo dehydrogenation, catalyzed by three different but related enzymes, and the breakdown pathways then diverge. Leucine is ultimately converted into acetyl-CoA and acetoacetate; isoleucine into acetyl-CoA and succinyl-CoA; and valine into propionyl-CoA (and subsequently succinyl-CoA). Under fasting conditions, substantial amounts of all three amino acids are generated by protein breakdown. In muscle, the final products of leucine, isoleucine, and valine catabolism can be fully oxidized via the citric acid cycle; in the liver, they can be directed toward the synthesis of ketone bodies (acetoacetate and acetyl-CoA) and glucose (succinyl-CoA). Because isoleucine catabolism terminates with the production of acetyl-CoA and propionyl-CoA, it is both glucogenic and ketogenic. Because leucine gives rise to acetyl-CoA and acetoacetyl-CoA, it is classified as strictly ketogenic.

PW088253

Pw088253 View Pathway
metabolic

Valine, Leucine, and Isoleucine Degradation

Bos taurus
Valine, isoleuciine, and leucine are essential amino acids and are identified as the branched-chain amino acids (BCAAs). The catabolism of all three amino acids starts in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with α-ketoglutarate as the amine acceptor. As a result, three different α-keto acids are produced and are oxidized using a common branched-chain α-keto acid dehydrogenase (BCKD), yielding the three different CoA derivatives. Isovaleryl-CoA is produced from leucine by these two reactions, alpha-methylbutyryl-CoA from isoleucine, and isobutyryl-CoA from valine. These acyl-CoA’s undergo dehydrogenation, catalyzed by three different but related enzymes, and the breakdown pathways then diverge. Leucine is ultimately converted into acetyl-CoA and acetoacetate; isoleucine into acetyl-CoA and succinyl-CoA; and valine into propionyl-CoA (and subsequently succinyl-CoA). Under fasting conditions, substantial amounts of all three amino acids are generated by protein breakdown. In muscle, the final products of leucine, isoleucine, and valine catabolism can be fully oxidized via the citric acid cycle; in the liver, they can be directed toward the synthesis of ketone bodies (acetoacetate and acetyl-CoA) and glucose (succinyl-CoA). Because isoleucine catabolism terminates with the production of acetyl-CoA and propionyl-CoA, it is both glucogenic and ketogenic. Because leucine gives rise to acetyl-CoA and acetoacetyl-CoA, it is classified as strictly ketogenic.

PW064671

Pw064671 View Pathway
metabolic

Valine, Leucine, and Isoleucine Degradation

Mus musculus
Valine, isoleuciine, and leucine are essential amino acids and are identified as the branched-chain amino acids (BCAAs). The catabolism of all three amino acids starts in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with α-ketoglutarate as the amine acceptor. As a result, three different α-keto acids are produced and are oxidized using a common branched-chain α-keto acid dehydrogenase (BCKD), yielding the three different CoA derivatives. Isovaleryl-CoA is produced from leucine by these two reactions, alpha-methylbutyryl-CoA from isoleucine, and isobutyryl-CoA from valine. These acyl-CoA’s undergo dehydrogenation, catalyzed by three different but related enzymes, and the breakdown pathways then diverge. Leucine is ultimately converted into acetyl-CoA and acetoacetate; isoleucine into acetyl-CoA and succinyl-CoA; and valine into propionyl-CoA (and subsequently succinyl-CoA). Under fasting conditions, substantial amounts of all three amino acids are generated by protein breakdown. In muscle, the final products of leucine, isoleucine, and valine catabolism can be fully oxidized via the citric acid cycle; in the liver, they can be directed toward the synthesis of ketone bodies (acetoacetate and acetyl-CoA) and glucose (succinyl-CoA). Because isoleucine catabolism terminates with the production of acetyl-CoA and propionyl-CoA, it is both glucogenic and ketogenic. Because leucine gives rise to acetyl-CoA and acetoacetyl-CoA, it is classified as strictly ketogenic.

PW000051

Pw000051 View Pathway
metabolic

Valine, Leucine, and Isoleucine Degradation

Homo sapiens
Valine, isoleuciine, and leucine are essential amino acids and are identified as the branched-chain amino acids (BCAAs). The catabolism of all three amino acids starts in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with α-ketoglutarate as the amine acceptor. As a result, three different α-keto acids are produced and are oxidized using a common branched-chain α-keto acid dehydrogenase (BCKD), yielding the three different CoA derivatives. Isovaleryl-CoA is produced from leucine by these two reactions, alpha-methylbutyryl-CoA from isoleucine, and isobutyryl-CoA from valine. These acyl-CoA’s undergo dehydrogenation, catalyzed by three different but related enzymes, and the breakdown pathways then diverge. Leucine is ultimately converted into acetyl-CoA and acetoacetate; isoleucine into acetyl-CoA and succinyl-CoA; and valine into propionyl-CoA (and subsequently succinyl-CoA). Under fasting conditions, substantial amounts of all three amino acids are generated by protein breakdown. In muscle, the final products of leucine, isoleucine, and valine catabolism can be fully oxidized via the citric acid cycle; in the liver, they can be directed toward the synthesis of ketone bodies (acetoacetate and acetyl-CoA) and glucose (succinyl-CoA). Because isoleucine catabolism terminates with the production of acetyl-CoA and propionyl-CoA, it is both glucogenic and ketogenic. Because leucine gives rise to acetyl-CoA and acetoacetyl-CoA, it is classified as strictly ketogenic.

PW064779

Pw064779 View Pathway
metabolic

Valine,leucine,isoleucine degradation

Homo sapiens

PW132221

Pw132221 View Pathway
metabolic

Valproate bismuth Drug Metabolism

Homo sapiens
Valproate bismuth is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Valproate bismuth passes through the liver and is then excreted from the body mainly through the kidney.

PW146698

Pw146698 View Pathway
drug action

Valproate bismuth Drug Metabolism Action Pathway

Homo sapiens

PW124228

Pw124228 View Pathway
drug action

Valproate w/ Template (New) Drug Action Action Pathway

Homo sapiens

PW124164

Pw124164 View Pathway
drug action

Valproic Acid (Drug Action) - New - DISCARD

Homo sapiens

PW144440

Pw144440 View Pathway
drug action

Valproic acid Drug Metabolism Action Pathway

Homo sapiens