PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW146183View Pathway |
drug action
Urea C-14 Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 17:36 Last Updated: October 07, 2023 at 17:36 |
PW088338View Pathway |
Urea CycleRattus norvegicus
Urea, also known as carbamide, is a waste product made by a large variety of living organisms and is the main component of urine. Urea is created in the liver, through a string of reactions that are called the Urea Cycle. This cycle is also
called the Ornithine Cycle, as well as the Krebs-Henseleit Cycle. There are some essential compounds required for the completion of this cycle, such as arginine, citrulline and ornithine. Arginine cleaves and creates urea and ornithine, and the reactions that follow see urea residue build up on ornithine, which recreates arginine and keeps the cycle going. Ornithine is transported to the mitochondrial matrix, and once there, ornithine carbamoyltransferase uses carbamoyl phosphate to create citrulline. After this, citrulline is transported to the cytosol. Once here, citrulline and aspartate team up to create argininosuccinic acid. After this, argininosuccinate lyase creates l-arginine. L-arginine finally uses arginase-1 to create ornithine again, which will be transported to the mitochondrial matrix and restart the urea cycle once more.
|
Creator: Ana Marcu Created On: August 10, 2018 at 13:58 Last Updated: August 10, 2018 at 13:58 |
PW000162View Pathway |
Urea CycleHomo sapiens
Urea, also known as carbamide, is a waste product made by a large variety of living organisms and is the main component of urine. Urea is created in the liver, through a string of reactions that are called the Urea Cycle. This cycle is also
called the Ornithine Cycle, as well as the Krebs-Henseleit Cycle. There are some essential compounds required for the completion of this cycle, such as arginine, citrulline and ornithine. Arginine cleaves and creates urea and ornithine, and the reactions that follow see urea residue build up on ornithine, which recreates arginine and keeps the cycle going. Ornithine is transported to the mitochondrial matrix, and once there, ornithine carbamoyltransferase uses carbamoyl phosphate to create citrulline. After this, citrulline is transported to the cytosol. Once here, citrulline and aspartate team up to create argininosuccinic acid. After this, argininosuccinate lyase creates l-arginine. L-arginine finally uses arginase-1 to create ornithine again, which will be transported to the mitochondrial matrix and restart the urea cycle once more.
|
Creator: WishartLab Created On: August 19, 2013 at 12:04 Last Updated: August 19, 2013 at 12:04 |
PW064668View Pathway |
Urea CycleMus musculus
Urea, also known as carbamide, is a waste product made by a large variety of living organisms and is the main component of urine. Urea is created in the liver, through a string of reactions that are called the Urea Cycle. This cycle is also
called the Ornithine Cycle, as well as the Krebs-Henseleit Cycle. There are some essential compounds required for the completion of this cycle, such as arginine, citrulline and ornithine. Arginine cleaves and creates urea and ornithine, and the reactions that follow see urea residue build up on ornithine, which recreates arginine and keeps the cycle going. Ornithine is transported to the mitochondrial matrix, and once there, ornithine carbamoyltransferase uses carbamoyl phosphate to create citrulline. After this, citrulline is transported to the cytosol. Once here, citrulline and aspartate team up to create argininosuccinic acid. After this, argininosuccinate lyase creates l-arginine. L-arginine finally uses arginase-1 to create ornithine again, which will be transported to the mitochondrial matrix and restart the urea cycle once more.
|
Creator: Carin Li Created On: January 22, 2018 at 00:16 Last Updated: January 22, 2018 at 00:16 |
PW088243View Pathway |
Urea CycleBos taurus
Urea, also known as carbamide, is a waste product made by a large variety of living organisms and is the main component of urine. Urea is created in the liver, through a string of reactions that are called the Urea Cycle. This cycle is also
called the Ornithine Cycle, as well as the Krebs-Henseleit Cycle. There are some essential compounds required for the completion of this cycle, such as arginine, citrulline and ornithine. Arginine cleaves and creates urea and ornithine, and the reactions that follow see urea residue build up on ornithine, which recreates arginine and keeps the cycle going. Ornithine is transported to the mitochondrial matrix, and once there, ornithine carbamoyltransferase uses carbamoyl phosphate to create citrulline. After this, citrulline is transported to the cytosol. Once here, citrulline and aspartate team up to create argininosuccinic acid. After this, argininosuccinate lyase creates l-arginine. L-arginine finally uses arginase-1 to create ornithine again, which will be transported to the mitochondrial matrix and restart the urea cycle once more.
|
Creator: Ana Marcu Created On: August 10, 2018 at 11:44 Last Updated: August 10, 2018 at 11:44 |
PW122235View Pathway |
Urea Cycle 55555Candida albicans
|
Creator: Guest: Anonymous Created On: September 20, 2018 at 16:51 Last Updated: September 20, 2018 at 16:51 |
PW127035View Pathway |
Urea Cycle 55555 1657450604Candida albicans
|
Creator: Guest: Anonymous Created On: July 10, 2022 at 04:57 Last Updated: July 10, 2022 at 04:57 |
PW145545View Pathway |
drug action
Urea Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 16:03 Last Updated: October 07, 2023 at 16:03 |
PW146012View Pathway |
drug action
Uridine triacetate Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 17:11 Last Updated: October 07, 2023 at 17:11 |
PW125956View Pathway |
drug action
UrokinaseHomo sapiens
Urokinase is a serine protease that functions as a recombinant tissue plasminogen activator. It is administered intravenously and used to treat conditions caused by arterial blood clots such as acute ischemic stroke, acute myocardial infarction, acute massive pulmonary embolism and blocked central venous access devices. It targets plasminogen in blood vessels where these clots occur. The clotting process consists of two pathways, intrinsic and extrinsic, which converge to create stable fibrin which traps platelets and forms a hemostatic plug. The intrinsic pathway is activated by trauma inside the vasculature system, when there is exposed endothelial collagen. Endothelial collagen only becomes exposed when there is damage. The pathway starts with plasma kallikrein activating factor XII. The activated factor XIIa activates factor XI. Factor IX is then activated by factor XIa. Thrombin activates factor VIII and a Calicum-phospholipid-XIIa-VIIIa complex forms. This complex then activates factor X, the merging point of the two pathways. The extrinsic pathway is activated when external trauma causes blood to escape the vasculature system. Activation occurs through tissue factor released by endothelial cells after external damage. The tissue factor is a cellular receptor for factor VII. In the presence of calcium, the active site transitions and a TF-VIIa complex is formed. This complex aids in activation of factors IX and X. Factor V is activated by thrombin in the presence of calcium, then the activated factor Xa, in the presence of phospholipid, calcium and factor Va can convert prothrombin to thrombin. The extrinsic pathway occurs first, producing a small amount of thrombin, which then acts as a positive feedback on several components to increase the thrombin production. Thrombin converts fibrinogen to a loose, unstable fibrin and also activates factor XIII. Factors XIIIa strengthens the fibrin-fibrin and forms a stable, mesh fibrin which is essential for clot formation. The blood clot can be broken down by the enzyme plasmin. Plasmin is formed from plasminogen by tissue plasminogen activator. Urokinase acts as a tissue plasminogen activator. It binds to clots with fibrin where it causes hydrolysis of the arginine-valine bond in plasminogen, aiding its conversion to plasmin. The plasmin degrades the stable fibrin and causes lysis of the clot. The activity of Urokinase depends on the presence of fibrin. Only small amounts of plasmin is formed from plasminogen when there is no fibrin. Urokinase in the presence of fibrin obtains a higher affinity for plasminogen, thus leading to its increased activity. Urokinase undergoes metabolism by proteases and is excreted in bile and urine.
|
Creator: Selena Created On: May 04, 2021 at 21:38 Last Updated: May 04, 2021 at 21:38 |