PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW146318View Pathway |
drug action
Zinc gluconate Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 17:55 Last Updated: October 07, 2023 at 17:55 |
PW146088View Pathway |
drug action
Zinc oxide Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 17:23 Last Updated: October 07, 2023 at 17:23 |
PW132211View Pathway |
Zinc phenolsulfonate Drug MetabolismHomo sapiens
Zinc phenolsulfonate is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Zinc phenolsulfonate passes through the liver and is then excreted from the body mainly through the kidney.
|
Creator: Ray Kruger Created On: September 21, 2023 at 20:09 Last Updated: September 21, 2023 at 20:09 |
PW146940View Pathway |
drug action
Zinc phenolsulfonate Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 19:24 Last Updated: October 07, 2023 at 19:24 |
PW146089View Pathway |
drug action
Zinc sulfate Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 17:23 Last Updated: October 07, 2023 at 17:23 |
PW146848View Pathway |
drug action
Zinc sulfate, unspecified form Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 19:11 Last Updated: October 07, 2023 at 19:11 |
PW128071View Pathway |
drug action
Ziprasidone Dopamine Antagonist Action PathwayHomo sapiens
Ziprasidone is an atypical antipsychotic used to treat schizophrenia, bipolar mania, and acute agitation in schizophrenic patients. It also indicated improvement on the manic syndrome subscale that measures symptoms of mania such as mood, insomnia, excessive energy and activity, and overall behavior and ideation. Ziprasidone is also used as off-labeled for monotherapy in acute hypomania, monotherapy as maintenance treatment for adult patients with bipolar I disorder, hyperactivity treatment, and for the treatment of delirium in the ICU. Ziprasidone presents in both oral capsule and intramuscular injection formulations. Ziprasidone is an atypical antipsychotic that has a binding affinity for dopaminergic (DA), serotonergic (5HT), adrenergic (a1), and histaminergic (HA) receptors. Regarding treatment for schizophrenia, antagonism of the dopamine (D2) receptor in the mesolimbic pathway has proven efficacious in diminishing positive symptoms, whereas the antagonism of the 5HT2A receptor in the mesocortical pathway has demonstrated reduction of negative symptoms of psychosis. Its efficacy and mechanism of action for treating bipolar disorder are unknown. The antagonization of both histaminergic and adrenergic (a1) receptors can induce somnolence and orthostatic hypotension.
|
Creator: Omolola Created On: July 13, 2023 at 09:43 Last Updated: July 13, 2023 at 09:43 |
PW144375View Pathway |
drug action
Ziprasidone Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 13:30 Last Updated: October 07, 2023 at 13:30 |
PW176643View Pathway |
drug action
Ziprasidone H1 Antihistamine Smooth Muscle Relaxation Action PathwayHomo sapiens
Ziprasidone is a weak H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles.
H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Ziprasidone also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.
|
Creator: Ray Kruger Created On: December 19, 2023 at 13:05 Last Updated: December 19, 2023 at 13:05 |
PW176736View Pathway |
drug action
Ziprasidone H1-Antihistamine Blood Vessel Constriction Action PathwayHomo sapiens
Ziprasidone is a weak H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles.
Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Ziprasidone inhibits the H1 histamine receptor on blood vessel endothelial cells. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin. Calcium bound calmodulin is required for the activation of the calmodulin-binding domain of nitric oxide synthase. The inhibition of nitric oxide synthesis prevents the activation of myosin light chain phosphatase. This causes an accumulation of myosin light chain-phosphate which causes the muscle to contract and the blood vessel to constrict, decreasing the swelling and fluid leakage from the blood vessels caused by allergens.
|
Creator: Ray Kruger Created On: December 19, 2023 at 14:08 Last Updated: December 19, 2023 at 14:08 |