PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW000648View Pathway |
drug action
Tramadol Action Action PathwayHomo sapiens
Tramadol is an analgesic drug consisting of two enantiomer forms (+)-Tramadol and (-)-Tramadol. Both contribute to pain relief by inhibiting pain transmission in the spinal cord via different mechanisms. (+)-Tramadol is a selective agonist of the mu receptor (OP3) inhibiting serotonin reuptake, while (-)-Tramadol inhibits norepinephrine reuptake in the central nervous system. Although tramadol is structurally related to codeine and morphine, it’s affinity for the mu receptor compared to other opioids is significantly less. Therefore tramadol is used when treatment with strong opioids is not necessary since it’s pharmacodynamic and pharmacokinetic properties suggest the low likelihood of patients becoming dependent.
|
Creator: WishartLab Created On: April 21, 2014 at 05:11 Last Updated: April 21, 2014 at 05:11 |
PW144324View Pathway |
drug action
Tramadol Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 13:24 Last Updated: October 07, 2023 at 13:24 |
PW000613View Pathway |
Tramadol Metabolism PathwayHomo sapiens
Tramadol (also named Ultram) is a class of opioid pain medication that used for treating pain. Metabolism of tramadol mainly happened in liver cell. The N-demethylation of tramadol is catalyzed by the cytochrome CYP3A4 and CYP2B6 to form N-Desmethyltramadol, which further metabolized to N,N-Didesmethyltramadol through CYP3A4 and CYP2B6 and to N,O-Didesmethyltramadol through CYP2D6. The O-demethylation of tramadol is catalyzed by the cytochrome CYP2D6 to form O-Desmethyltramadol, which further metabolized to O-Desmethyltramadol glucuronide through UDP-glucuronosyltransferase 2B7 and UDP-glucuronosyltransferase 1-8. O-Desmethyltramadol can also be metabolized to N,O-Didesmethyltramadol through CYP2D6.
|
Creator: WishartLab Created On: September 11, 2013 at 22:33 Last Updated: September 11, 2013 at 22:33 |
PW126901View Pathway |
Tramadol Metabolism Pathway (New)Homo sapiens
|
Creator: Karxena Harford Created On: May 05, 2022 at 01:10 Last Updated: May 05, 2022 at 01:10 |
PW128072View Pathway |
drug action
Tramadol NMDA Antagonist Action PathwayHomo sapiens
Tramadol is a centrally acting synthetic opioid agonist and SNRI used for the management of moderate to severe pain in adults. It is structurally related to codeine and morphine. It main mechanism of action is on mu-opioid receptors and SNRIs, but it also known to effect pain modulators such as adrenoreceptors, neurokinin receptors, voltage-gated sodium channels, capsaicin receptors, muscarinic receptors (M1 and M3), NMDA receptors, adenosine receptors, and nicotinic acetylcholine receptors.
Tramadol diffuses across the blood-brain barrier after being absorbed by the intestine. It then inhibits NMDA receptors in the brain. This prevents glutamate from binding to NMDA receptors, which prevents calcium from entering the postsynaptic neuron which leads to hyperpolarization.
|
Creator: Ray Kruger Created On: July 13, 2023 at 09:56 Last Updated: July 13, 2023 at 09:56 |
PW126557View Pathway |
drug action
Tramadol Opioid Agonist Action PathwayHomo sapiens
Tramadol is a centrally-acting opioid agonist and SNRI (serotonin/norepinephrine reuptake inhibitor) used for the management of moderate to severe pain in adults.
Tramadol binds to mu opioid receptors, stimulating the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as GABA is inhibited. Opioids close N-type voltage-operated calcium channels and open calcium-dependent inwardly rectifying potassium channels. This results in hyperpolarization and reduced neuronal excitability. O-desmethyltramadol acts at A delta and C pain fibres in the dorsal horn of the spinal cord. By decreasing neurotransmitter action there is less pain transmittance into the spinal cord. This leads to less pain perception.
|
Creator: Karxena Harford Created On: January 10, 2022 at 01:57 Last Updated: January 10, 2022 at 01:57 |
PW145886View Pathway |
drug action
Trametinib Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 16:54 Last Updated: October 07, 2023 at 16:54 |
PW124449View Pathway |
drug action
Trandolapril ACE Inhibitor Action PathwayHomo sapiens
Trandolapril is an angiotensin-converting enzyme (ACE) inhibitor for the conversion of angiotensin I into angiotensin II. Angiotensin II is a critical circulating peptide hormone that has powerful vasoconstrictive effects and increases blood pressure. Trandolapril is used to treat hypertension, high blood pressure, congestive heart failure, and chronic renal failure as it decreases blood pressure. Trandolapril is converted into trandolaprilat through the liver after being ingested which travels in the blood to inhibit ACE which is from the lungs. Angiotensin has many vasoconstrictive effects by binding to angiotensin II type 1 receptor (AT1) in blood vessels, kidneys, hypothalamus, and posterior pituitary. In blood vessels, AT1 receptors cause vasoconstriction in the tunica media layer of smooth muscle surrounding blood vessels increasing blood pressure. Less angiotensin II that is circulating lowers the constriction of these blood vessels. AT1 receptors in the kidney are responsible for the production of aldosterone which increases salt and water retention which increases blood volume. Less angiotensin II reduces aldosterone production allowing water retention to not increase. AT1 receptors in the hypothalamus are on astrocytes which inhibit the excitatory amino acid transporter 3 from up-taking glutamate back into astrocytes. Glutamate is responsible for the activation of NMDA receptors on paraventricular nucleus neurons (PVN neurons) that lead to thirst sensation. Since angiotensin II levels are lowered, the inhibition of the uptake transporter is not limited decreasing the amount of glutamate activating NMDA on PVN neurons that make the individual crave drinking less. This lowers the blood volume as well. Lastly, the AT1 receptors on posterior pituitary gland are responsible for the release of vasopressin. Vasopressin is an anti-diuretic hormone that cases water reabsorption in the kidney as well as causing smooth muscle contraction in blood vessels increasing blood pressure. Less angiotensin II activating vasopressin release inhibits blood pressure from increasing. Overall, Trandolapril inhibits the conversion of angiotensin I into angiotensin II, a powerful vasoconstrictor and mediator of high blood pressure so decreasing levels of angiotensin will help reduce blood pressure from climbing in individuals. Overdose symptoms are due to severe hypotension leading experiencing effects such as cough, headache, and dizziness.
|
Creator: Selena Created On: January 13, 2021 at 13:21 Last Updated: January 13, 2021 at 13:21 |
PW000235View Pathway |
drug action
Trandolapril Action PathwayHomo sapiens
Trandolapril (trade name: Mavik) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Trandolapril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form trandolaprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
|
Creator: WishartLab Created On: August 22, 2013 at 10:45 Last Updated: August 22, 2013 at 10:45 |
PW144638View Pathway |
drug action
Trandolapril Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 14:05 Last Updated: October 07, 2023 at 14:05 |