Loader

Pathways

PathWhiz ID Pathway Meta Data

PW122449

Pw122449 View Pathway
metabolic

Threonine Biosynthesis

Saccharomyces cerevisiae

PW002401

Pw002401 View Pathway
metabolic

Threonine Metabolism

Saccharomyces cerevisiae
The biosynthesis of threonine starts with L-aspartic acid being phosphorylated by an ATP-driven aspartate kinase resulting in a release of an ADP and an L-aspartyl-4-phosphate. This compound interacts with a hydrogen ion through an NADPH-driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP, and an L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through an NADPH-driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and an L-homoserine. L-Homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion, and an O-phosphohomoserine. The latter compound then interacts with a water molecule threonine synthase resulting in the release of a phosphate and an L-threonine. L-threonine is degraded into glycine and acetaldehyde by reacting with a threonine aldolase. Acetaldehyde can then be integrated into the mitochondria or stay in the cytosol. It is then degraded into acetyl-CoA through an aldehyde dehydrogenase.

PW002554

Pw002554 View Pathway
metabolic

Threonine Metabolism

Arabidopsis thaliana
The biosynthesis of threonine starts with L-aspartic acid being phosphorylated by an ATP-driven aspartate kinase resulting in a release of an ADP and an L-aspartyl-4-phosphate. This compound interacts with a hydrogen ion through an NADPH-driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP, and an L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through an NADPH-driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and an L-homoserine. L-Homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion, and an O-phosphohomoserine. The latter compound then interacts with a water molecule threonine synthase resulting in the release of a phosphate and an L-threonine. L-threonine is degraded into glycine and acetaldehyde by reacting with a threonine aldolase. Acetaldehyde can then be integrated into the mitochondria or stay in the cytosol. It is then degraded into acetyl-CoA through an aldehyde dehydrogenase.

PW128498

Pw128498 View Pathway
drug action

Thrombin Alfa Action Pathway

Homo sapiens
Thrombin alfa also known under the brand name Recothrom, is a platelet-activating factor to treat minor bleeding. It is administered topically, it is a recombinant thrombin identical to that of the endogenous human thrombin. Thrombin alfa is a human serine protease that cleaves fibrinogen to fibrin which leads to clot formation. Once thrombin alfa has performed its function it is rapidly inactivated by circulating endogenous plasma inhibitors.

PW128496

Pw128496 View Pathway
drug action

Thrombin Alfa Action Pathway (didnt work)

Homo sapiens
Thrombin alfa also known under the brand name Recothrom, is a platelet-activating factor to treat minor bleeding. It is administered topically, it is a recombinant thrombin identical to that of the endogenous human thrombin. Thrombin alfa is a human serine protease that cleaves fibrinogen to fibrin which leads to clot formation. Once thrombin alfa has performed its function it is rapidly inactivated by circulating endogenous plasma inhibitors.

PW129677

Pw129677 View Pathway
metabolic

Thrombopoietin Drug Metabolism

Homo sapiens

PW145509

Pw145509 View Pathway
drug action

Thymol Drug Metabolism Action Pathway

Homo sapiens

PW122317

Pw122317 View Pathway
metabolic

thyroid

Homo sapiens

PW000693

Pw000693 View Pathway
metabolic

Thyroid Hormone Synthesis

Homo sapiens
Thyroid hormone synthesis is a process that occurs in the thyroid gland in humans that results in the production of thyroid hormones which regulate many different processes in the body, such as metabolism, temperature regulation and growth/development. Thyroid hormone synthesis begins in the nucleus of a thyroid follicular cell, as thyroglobulin synthesis occurs here and is transported to the endoplasmic reticulum. From there, thyroglobulin transported through endocytosis into the intracellular space, and then transported through exocytosis to the follicle colloid. There, thyroglobulin is joined by iodide that has been transported from the blood, through the thyroid follicular cell and arrived in the the follicle colloid using pendrin, and hydrogen peroxide to be catalyzed by thyroid peroxidase, creating thyroglobulin + iodotyrosine. Then, iodide, hydrogen peroxide and thyroidperoxidase create thyroglobulin + 3,5-diiodo-L-tyrosine. Thyroglobulin+3,5-diiodo-L-tyrosine then joins with hydrogen peroxide and thyroid peroxidase to create thyroglobulin + 2-aminoacrylic acid and thyroglobulin+liothyronine. Thyroglobulin + liothyronine then goes through two processes, the first being its transportation into the cell and undergoing of proteolysis, which is followed by liothyronine being transported into the bloodstream. The second process is thyroglobulin + liothyronine being catalyzed by thyroid peroxidase and resulting in the production of thyroglobulin + thyroxine. Thyroglobulin + thyroxine is then transported back into the cell, undergoes proteolysis, and thyroxine alone is transported back out of the cell and into the bloodstream.

PW088288

Pw088288 View Pathway
metabolic

Thyroid Hormone Synthesis

Bos taurus
Thyroid hormone synthesis is a process that occurs in the thyroid gland in humans that results in the production of thyroid hormones which regulate many different processes in the body, such as metabolism, temperature regulation and growth/development. Thyroid hormone synthesis begins in the nucleus of a thyroid follicular cell, as thyroglobulin synthesis occurs here and is transported to the endoplasmic reticulum. From there, thyroglobulin transported through endocytosis into the intracellular space, and then transported through exocytosis to the follicle colloid. There, thyroglobulin is joined by iodide that has been transported from the blood, through the thyroid follicular cell and arrived in the the follicle colloid using pendrin, and hydrogen peroxide to be catalyzed by thyroid peroxidase, creating thyroglobulin + iodotyrosine. Then, iodide, hydrogen peroxide and thyroidperoxidase create thyroglobulin + 3,5-diiodo-L-tyrosine. Thyroglobulin+3,5-diiodo-L-tyrosine then joins with hydrogen peroxide and thyroid peroxidase to create thyroglobulin + 2-aminoacrylic acid and thyroglobulin+liothyronine. Thyroglobulin + liothyronine then goes through two processes, the first being its transportation into the cell and undergoing of proteolysis, which is followed by liothyronine being transported into the bloodstream. The second process is thyroglobulin + liothyronine being catalyzed by thyroid peroxidase and resulting in the production of thyroglobulin + thyroxine. Thyroglobulin + thyroxine is then transported back into the cell, undergoes proteolysis, and thyroxine alone is transported back out of the cell and into the bloodstream.