Loader

Pathways

PathWhiz ID Pathway Meta Data

PW059696

Pw059696 View Pathway
drug action

Thonzylamine H1-Antihistamine Action

Homo sapiens
Thonzylamine is a first-generation ethylenediamine H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.

PW176713

Pw176713 View Pathway
drug action

Thonzylamine H1-Antihistamine Blood Vessel Constriction Action Pathway

Homo sapiens
Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Thonzylamine inhibits the H1 histamine receptor on blood vessel endothelial cells. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin. Calcium bound calmodulin is required for the activation of the calmodulin-binding domain of nitric oxide synthase. The inhibition of nitric oxide synthesis prevents the activation of myosin light chain phosphatase. This causes an accumulation of myosin light chain-phosphate which causes the muscle to contract and the blood vessel to constrict, decreasing the swelling and fluid leakage from the blood vessels caused by allergens.

PW176805

Pw176805 View Pathway
drug action

Thonzylamine H1-Antihistamine Immune Response Action Pathway

Homo sapiens
Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.

PW088535

Pw088535 View Pathway
metabolic

Threonine and 2-Oxobutanoate Degradation

Caenorhabditis elegans
2-oxobutanoate, also known as 2-Ketobutyric acid, is a 2-keto acid that is commonly produced in the metabolism of amino acids such as methionine and threonine. Like other 2-keto acids, degradation of 2-oxobutanoate occurs in the mitochondrial matrix and begins with oxidative decarboxylation to its acyl coenzyme A derivative, propionyl-CoA. This reaction is mediated by a class of large, multienzyme complexes called 2-oxo acid dehydrogenase complexes. While no 2-oxo acid dehydrogenase complex is specific to 2-oxobutanoate, numerous complexes can catalyze its reaction. In this pathway the branched-chain alpha-keto acid dehydrogenase complex is depicted. All 2-oxo acid dehydrogenase complexes consist of three main components: a 2-oxo acid dehydrogenase (E1) with a thiamine pyrophosphate cofactor, a dihydrolipoamide acyltransferase (E2) with a lipoate cofactor, and a dihydrolipoamide dehydrogenase (E3) with a flavin cofactor. E1 binds the 2-oxobutanoate to the lipoate on E2, which then transfers the propionyl group to coenzyme A, producing propionyl-CoA and reducing the lipoate. E3 then transfers protons to NAD in order to restore the lipoate. Propionyl-CoA carboxylase transforms the propionyl-CoA to S-methylmalonyl-CoA, which is then converted to R-methylmalonyl-CoA via methylmalonyl-CoA epimerase. In the final step, methylmalonyl-CoA mutase acts on the R-methylmalonyl-CoA to produce succinyl-CoA.

PW064660

Pw064660 View Pathway
metabolic

Threonine and 2-Oxobutanoate Degradation

Mus musculus
2-oxobutanoate, also known as 2-Ketobutyric acid, is a 2-keto acid that is commonly produced in the metabolism of amino acids such as methionine and threonine. Like other 2-keto acids, degradation of 2-oxobutanoate occurs in the mitochondrial matrix and begins with oxidative decarboxylation to its acyl coenzyme A derivative, propionyl-CoA. This reaction is mediated by a class of large, multienzyme complexes called 2-oxo acid dehydrogenase complexes. While no 2-oxo acid dehydrogenase complex is specific to 2-oxobutanoate, numerous complexes can catalyze its reaction. In this pathway the branched-chain alpha-keto acid dehydrogenase complex is depicted. All 2-oxo acid dehydrogenase complexes consist of three main components: a 2-oxo acid dehydrogenase (E1) with a thiamine pyrophosphate cofactor, a dihydrolipoamide acyltransferase (E2) with a lipoate cofactor, and a dihydrolipoamide dehydrogenase (E3) with a flavin cofactor. E1 binds the 2-oxobutanoate to the lipoate on E2, which then transfers the propionyl group to coenzyme A, producing propionyl-CoA and reducing the lipoate. E3 then transfers protons to NAD in order to restore the lipoate. Propionyl-CoA carboxylase transforms the propionyl-CoA to S-methylmalonyl-CoA, which is then converted to R-methylmalonyl-CoA via methylmalonyl-CoA epimerase. In the final step, methylmalonyl-CoA mutase acts on the R-methylmalonyl-CoA to produce succinyl-CoA.

PW088374

Pw088374 View Pathway
metabolic

Threonine and 2-Oxobutanoate Degradation

Rattus norvegicus
2-oxobutanoate, also known as 2-Ketobutyric acid, is a 2-keto acid that is commonly produced in the metabolism of amino acids such as methionine and threonine. Like other 2-keto acids, degradation of 2-oxobutanoate occurs in the mitochondrial matrix and begins with oxidative decarboxylation to its acyl coenzyme A derivative, propionyl-CoA. This reaction is mediated by a class of large, multienzyme complexes called 2-oxo acid dehydrogenase complexes. While no 2-oxo acid dehydrogenase complex is specific to 2-oxobutanoate, numerous complexes can catalyze its reaction. In this pathway the branched-chain alpha-keto acid dehydrogenase complex is depicted. All 2-oxo acid dehydrogenase complexes consist of three main components: a 2-oxo acid dehydrogenase (E1) with a thiamine pyrophosphate cofactor, a dihydrolipoamide acyltransferase (E2) with a lipoate cofactor, and a dihydrolipoamide dehydrogenase (E3) with a flavin cofactor. E1 binds the 2-oxobutanoate to the lipoate on E2, which then transfers the propionyl group to coenzyme A, producing propionyl-CoA and reducing the lipoate. E3 then transfers protons to NAD in order to restore the lipoate. Propionyl-CoA carboxylase transforms the propionyl-CoA to S-methylmalonyl-CoA, which is then converted to R-methylmalonyl-CoA via methylmalonyl-CoA epimerase. In the final step, methylmalonyl-CoA mutase acts on the R-methylmalonyl-CoA to produce succinyl-CoA.

PW088281

Pw088281 View Pathway
metabolic

Threonine and 2-Oxobutanoate Degradation

Bos taurus
2-oxobutanoate, also known as 2-Ketobutyric acid, is a 2-keto acid that is commonly produced in the metabolism of amino acids such as methionine and threonine. Like other 2-keto acids, degradation of 2-oxobutanoate occurs in the mitochondrial matrix and begins with oxidative decarboxylation to its acyl coenzyme A derivative, propionyl-CoA. This reaction is mediated by a class of large, multienzyme complexes called 2-oxo acid dehydrogenase complexes. While no 2-oxo acid dehydrogenase complex is specific to 2-oxobutanoate, numerous complexes can catalyze its reaction. In this pathway the branched-chain alpha-keto acid dehydrogenase complex is depicted. All 2-oxo acid dehydrogenase complexes consist of three main components: a 2-oxo acid dehydrogenase (E1) with a thiamine pyrophosphate cofactor, a dihydrolipoamide acyltransferase (E2) with a lipoate cofactor, and a dihydrolipoamide dehydrogenase (E3) with a flavin cofactor. E1 binds the 2-oxobutanoate to the lipoate on E2, which then transfers the propionyl group to coenzyme A, producing propionyl-CoA and reducing the lipoate. E3 then transfers protons to NAD in order to restore the lipoate. Propionyl-CoA carboxylase transforms the propionyl-CoA to S-methylmalonyl-CoA, which is then converted to R-methylmalonyl-CoA via methylmalonyl-CoA epimerase. In the final step, methylmalonyl-CoA mutase acts on the R-methylmalonyl-CoA to produce succinyl-CoA.

PW088433

Pw088433 View Pathway
metabolic

Threonine and 2-Oxobutanoate Degradation

Drosophila melanogaster
2-oxobutanoate, also known as 2-Ketobutyric acid, is a 2-keto acid that is commonly produced in the metabolism of amino acids such as methionine and threonine. Like other 2-keto acids, degradation of 2-oxobutanoate occurs in the mitochondrial matrix and begins with oxidative decarboxylation to its acyl coenzyme A derivative, propionyl-CoA. This reaction is mediated by a class of large, multienzyme complexes called 2-oxo acid dehydrogenase complexes. While no 2-oxo acid dehydrogenase complex is specific to 2-oxobutanoate, numerous complexes can catalyze its reaction. In this pathway the branched-chain alpha-keto acid dehydrogenase complex is depicted. All 2-oxo acid dehydrogenase complexes consist of three main components: a 2-oxo acid dehydrogenase (E1) with a thiamine pyrophosphate cofactor, a dihydrolipoamide acyltransferase (E2) with a lipoate cofactor, and a dihydrolipoamide dehydrogenase (E3) with a flavin cofactor. E1 binds the 2-oxobutanoate to the lipoate on E2, which then transfers the propionyl group to coenzyme A, producing propionyl-CoA and reducing the lipoate. E3 then transfers protons to NAD in order to restore the lipoate. Propionyl-CoA carboxylase transforms the propionyl-CoA to S-methylmalonyl-CoA, which is then converted to R-methylmalonyl-CoA via methylmalonyl-CoA epimerase. In the final step, methylmalonyl-CoA mutase acts on the R-methylmalonyl-CoA to produce succinyl-CoA.

PW000166

Pw000166 View Pathway
metabolic

Threonine and 2-Oxobutanoate Degradation

Homo sapiens
2-oxobutanoate, also known as 2-Ketobutyric acid, is a 2-keto acid that is commonly produced in the metabolism of amino acids such as methionine and threonine. Like other 2-keto acids, degradation of 2-oxobutanoate occurs in the mitochondrial matrix and begins with oxidative decarboxylation to its acyl coenzyme A derivative, propionyl-CoA. This reaction is mediated by a class of large, multienzyme complexes called 2-oxo acid dehydrogenase complexes. While no 2-oxo acid dehydrogenase complex is specific to 2-oxobutanoate, numerous complexes can catalyze its reaction. In this pathway the branched-chain alpha-keto acid dehydrogenase complex is depicted. All 2-oxo acid dehydrogenase complexes consist of three main components: a 2-oxo acid dehydrogenase (E1) with a thiamine pyrophosphate cofactor, a dihydrolipoamide acyltransferase (E2) with a lipoate cofactor, and a dihydrolipoamide dehydrogenase (E3) with a flavin cofactor. E1 binds the 2-oxobutanoate to the lipoate on E2, which then transfers the propionyl group to coenzyme A, producing propionyl-CoA and reducing the lipoate. E3 then transfers protons to NAD in order to restore the lipoate. Propionyl-CoA carboxylase transforms the propionyl-CoA to S-methylmalonyl-CoA, which is then converted to R-methylmalonyl-CoA via methylmalonyl-CoA epimerase. In the final step, methylmalonyl-CoA mutase acts on the R-methylmalonyl-CoA to produce succinyl-CoA.

PW122600

Pw122600 View Pathway
metabolic

Threonine Biosynthesis

Pseudomonas aeruginosa
The biosynthesis of threonine starts with oxalacetic acid interacting with an L-glutamic acid through an aspartate aminotransferase resulting in a oxoglutaric acid and an L-aspartic acid. The latter compound is then phosphorylated by an ATP driven Aspartate kinase resulting in an a release of an ADP and an L-aspartyl-4-phosphate. L-aspartyl-4-phosphate then interacts with a hydrogen ion through an NADPH driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP and a L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through a NADPH driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and a L-homoserine. L-homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion and a O-phosphohomoserine. O-phosphohomoserine then interacts with a water molecule and threonine synthase resulting in the release of a phosphate and an L-threonine.