PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW128181View Pathway |
drug action
Thiothixene Dopamine Antagonist Action PathwayHomo sapiens
Thiothixene is an antipsychotic of the thioxanthene series. Thiothixene acts as an antagonist (blocking agent) on different post-sysnaptic receptors -on dopaminergic-receptors (subtypes D1, D2, D3 and D4 - different antipsychotic properties on productive and unproductive symptoms), on serotonergic-receptors (5-HT1 and 5-HT2, with anxiolytic, antidepressive and antiaggressive properties as well as an attenuation of extrapypramidal side-effects, but also leading to weight gain, fall in blood pressure, sedation and ejaculation difficulties), on histaminergic-receptors (H1-receptors, sedation, antiemesis, vertigo, fall in blood pressure and weight gain), alpha1/alpha2-receptors (antisympathomimetic properties, lowering of blood pressure, reflex tachycardia, vertigo, sedation, hypersalivation and incontinence as well as sexual dysfunction, but may also attenuate pseudoparkinsonism - controversial) and finally on muscarinic (cholinergic) M1/M2-receptors (causing anticholinergic symptoms like dry mouth, blurred vision, obstipation, difficulty/inability to urinate, sinus tachycardia, ECG-changes and loss of memory, but the anticholinergic action may attenuate extrapyramidal side-effects)
|
Creator: Omolola Created On: July 28, 2023 at 12:17 Last Updated: July 28, 2023 at 12:17 |
PW145486View Pathway |
drug action
Thiothixene Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 15:55 Last Updated: October 07, 2023 at 15:55 |
PW132294View Pathway |
Thiram Drug MetabolismHomo sapiens
Thiram is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Thiram passes through the liver and is then excreted from the body mainly through the kidney.
|
Creator: Ray Kruger Created On: September 21, 2023 at 20:41 Last Updated: September 21, 2023 at 20:41 |
PW146617View Pathway |
drug action
Thiram Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 18:38 Last Updated: October 07, 2023 at 18:38 |
PW146196View Pathway |
drug action
Thonzonium Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 17:38 Last Updated: October 07, 2023 at 17:38 |
PW146312View Pathway |
drug action
Thonzylamine Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 17:55 Last Updated: October 07, 2023 at 17:55 |
PW176620View Pathway |
drug action
Thonzylamine H1 Antihistamine Smooth Muscle Relaxation Action PathwayHomo sapiens
Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles.
H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Thonzylamine also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.
|
Creator: Ray Kruger Created On: December 19, 2023 at 12:58 Last Updated: December 19, 2023 at 12:58 |
PW059696View Pathway |
drug action
Thonzylamine H1-Antihistamine ActionHomo sapiens
Thonzylamine is a first-generation ethylenediamine H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.
|
Creator: Carin Li Created On: September 18, 2017 at 11:17 Last Updated: September 18, 2017 at 11:17 |
PW176713View Pathway |
drug action
Thonzylamine H1-Antihistamine Blood Vessel Constriction Action PathwayHomo sapiens
Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles.
Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Thonzylamine inhibits the H1 histamine receptor on blood vessel endothelial cells. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin. Calcium bound calmodulin is required for the activation of the calmodulin-binding domain of nitric oxide synthase. The inhibition of nitric oxide synthesis prevents the activation of myosin light chain phosphatase. This causes an accumulation of myosin light chain-phosphate which causes the muscle to contract and the blood vessel to constrict, decreasing the swelling and fluid leakage from the blood vessels caused by allergens.
|
Creator: Ray Kruger Created On: December 19, 2023 at 13:59 Last Updated: December 19, 2023 at 13:59 |
PW176805View Pathway |
drug action
Thonzylamine H1-Antihistamine Immune Response Action PathwayHomo sapiens
Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles.
H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.
|
Creator: Carin Li Created On: December 19, 2023 at 15:09 Last Updated: December 19, 2023 at 15:09 |